Comportamiento dinámico en vibraciones transversales de madera densificada, laminada y reforzada con fibra de carbono
DOI:
https://doi.org/10.33064/iycuaa2025968288Palabras clave:
Cryptomeria japonica, densidad de la madera, modificación de la madera, vibraciones, módulo dinámico, sugiResumen
La modificación de la madera con tratamientos de laminado, densificado y reforzado con fibra de carbono se orienta a la mejora de sus propiedades tecnológicas y a la optimización de sus aplicaciones industriales. El objetivo de la investigación fue determinar las densidades y los módulos dinámicos de madera sólida, laminada y reforzada de Cryptomeria japonica (sugi). Se realizaron pruebas de vibraciones transversales empleando 36 probetas de pequeñas dimensiones. Los tratamientos de laminado, densificado y reforzado con fibra de carbono incrementan la densidad y el módulo dinámico de la madera sólida. Esta mejora tecnológica se explica por el efecto del densificado, de la resina epoxi como adhesivo y por la incorporación de fibra de carbono como refuerzo. Las magnitudes siguen las tendencias estadísticas de las de maderas reportadas en la bibliografía.
Descargas
Citas
• Bal, B. C. (2016). Some technological properties of laminated veneer lumber produced with fast-growing poplar and eucalyptus. Maderas: Ciencia y Tecnología, 18(3), 413-424. https://doi.org/10.4067/S0718-221X2016005000037
• Brémaud, I., El Kaïm, Y., Guibal, D., Minato, K., Thibaut, T., & Gril, J. (2012). Characterization and categorization of the diversity in viscoelastic vibrational properties between 98 wood types. Annals of Forest Science, 69(3), 373-386. https://doi.org/10.1007/s13595-011-0166-z
• Dlouhá, J., Alméras, T., Beauchêne, J., Clair, B., & Fournier, M. (2018). Biophysical dependences among functional wood traits. Functional Ecology, 32(12), 2652–2665. https://doi.org/10.1111/1365-2435.13209
• Fang, C. H., Cloutier, A., Blanchet, P., & Koubaa, A. (2012). Densification of wood veneers combined with oil heat treatment. Part II: Hygroscopicity and mechanical properties. BioResources, 7(1), 925-935. https://bioresources.cnr.ncsu.edu/resources/densification-of-wood-veneers-combined-with-oil-heat-treatment-part-ii-hygroscopicity-and-mechanical-properties/
• Faydi, Y., Brancheriau, L., Pot, G., & Collet, R. (2017). Prediction of oak wood mechanical properties based on the statistical exploitation of vibrational response. BioResources, 12(3), 5913-5927. https://bioresources.cnr.ncsu.edu/resources/prediction-of-oak-wood-mechanical-properties-based-on-the-statistical-exploitation-of-vibrational-response/
• Frihart, C. R. (2009). Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology, 23(4), 601-617. https://doi.org/10.1163/156856108X379137
• Gaff, M., Vokatý, V., Babiak, M., & Bal, B. C. (2016). Coefficient of wood bendability as a function of selected factors. Construction and Building Materials, 126, 632-640. https://doi.org/10.1016/j.conbuildmat.2016.09.085
• Gao, Z., Huang, R., Lu, J., Chen, Z., Guo, F., & Zhan, T. (2016). Sandwich compression of wood: Control of creating density gradient on lumber thickness and properties of compressed wood. Wood Science and Technology, 50(4), 833-844. https://doi.org/10.1007/s00226-016-0824-2
• Hayashi, T., & Miyatake, A. (2015). Recent research and development on sugi (Cryptomeria japonica) structural glued laminated timber. Journal of Wood Science, 61, 337-342. https://doi.org/10.1007/s10086-015-1475-x
• International Organization for Standardization. (2014a). ISO 13061-1:2014. Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 1: Determination of moisture content for physical tests. International Organization for Standardization.
• International Organization for Standardization. (2014b). ISO 13061-2:2014. Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 2: Determination of density for physical and mechanical tests. International Organization for Standardization.
• Ishiguri, F., Kasai, S., Yokota, S., Iizuka, K., & Yoshizawa, N. (2005). Wood quality of sugi (Cryptomeria japonica) grown at four initial spacings. IAWA Journal, 26(3), 375-386. https://doi.org/10.1163/22941932-02603008
• Kandler, G., Lukacevic, M., Zechmeister, C., Wolff, S., & Füssl, J. (2018). Stochastic engineering framework for timber structural elements and its application to glued laminated timber beams. Construction and Building Materials, 190, 573-592. https://doi.org/10.1016/j.conbuildmat.2018.09.129
• Karaman, A., Yildirim, M. N., & Tor, O. (2021). Bending characteristics of laminated wood composites constructed with black pine wood and aramid fiber reinforced fabric. Wood Research, 66(2), 309-320. https://doi.org/10.37763/wr.1336-4561/66.2.309320
• Kliger, I. R., Haghani, R., Brunner, M., Harte, A. M., & Schober, K. (2016). Wood-based beams strengthened with FRP laminates: Improved performance with pre-stressed systems. European Journal of Wood and Wood Products, 74, 319-330. https://doi.org/10.1007/s00107-015-0970-5
• Kretschmann, D., & Hernandez, R. (2006). Grading timber and glued structural members. En J. C. F. Walker, Primary wood processing: Principles and practice (pp. 347-381). Springer. https://doi.org/10.1007/1-4020-4393-7
• Kutnar, A., & Šernek, M. (2007). Densification of wood. Zbornik gozdarstva in lesarstva, 82, 53-62. http://eprints.gozdis.si/id/eprint/198
• Macedo-Alquicira, I., Bedolla-Arrollo, J., Raya-González, D., Rutiaga-Quiñones, J. G., Castro-Sánchez, F. J., & Sotomayor-Castellanos, J. R. (2022). Pruebas de torsión dinámica de madera sólida y de multimaterial de Fagus crenata. Bosques Latitud Cero, 12(2), 93-102. https://www.academia.edu/94061774/Pruebas_de_torsi%C3%B3n_din%C3%A1mica_de_madera_s%C3%B3lida_y_de_multimaterial_de_Fagus_crenata
• Niklas, K. J., & Spatz, H. C. (2010). Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 97(10), 1587-1594. https://doi.org/10.3732/ajb.1000150
• Novosel, A., Sedlar, T., Čizmar, D., Turkulin, H., & Živković, V. (2021). Structural reinforcement of bi-directional oak-wood lamination by carbon fibre implants. Construction and Building Materials, 287, 123073. https://doi.org/10.1016/j.conbuildmat.2021.123073
• Rescalvo, F. J., Duriot, R., Pot, G., Gallego, A., & Denaud, L. (2020). Enhancement of bending properties of Douglas-fir and poplar laminate veneer lumber (LVL) beams with carbon and basalt fibers reinforcement. Construction and Building Materials, 263, 120185. https://doi.org/10.1016/j.conbuildmat.2020.120185
• Román-Jordán, E., Esteban, L. G., de Palacios, P., & Fernández, F. G. (2017). Comparative wood anatomy of the Cupressaceae and correspondence with phylogeny, with special reference to the monotypic taxa. Plant Systematics and Evolution, 303, 203-219. https://doi.org/10.1007/s00606-016-1364-9
• Roohnia, M., & Brancheriau, L. (2015). Orientation and position effects of a local heterogeneity on flexural vibration frequencies in wooden beams. CERNE, 21(2), 339-344. https://doi.org/10.1590/01047760201521021674
• Schober, K. U., Harte, A. M., Kliger, R., Jockwer, R., Xu, Q., & Chen, J.-F. (2015). FRP reinforcement of timber structures. Construction and Building Materials, 97, 106-118. https://doi.org/10.1016/j.conbuildmat.2015.06.020
• Sikora, A., Gaffová, Z., Rajnoha, R., Šatanová, A., & Kminiak, R. (2017). Deflection of densified beech and aspen woods as a function of selected factors. BioResources, 12(2), 3192-3210. https://doi.org/10.15376/biores.12.2.3192-3210
• Sikora, A., Svoboda, T., Záborský, V., & Gaffová, Z. (2019). Effect of selected factors on the bending deflection at the limit of proportionality and at the modulus of rupture in laminated veneer lumber. Forests, 10(5), 401. https://doi.org/10.3390/f10050401
• Śliwa-Wieczorek, K., Ostrowski, K. A., Jaskowska-Lemańska, J., & Karolak, A. (2021). The influence of CFRP sheets on the load-bearing capacity of the glued laminated timber beams under bending test. Materials, 14(14), 4019. https://doi.org/10.3390/ma14144019
• Sotomayor-Castellanos, J. R. (2019). Módulos de elasticidad e índices de calidad de maderas mexicanas. Síntesis de datos del Laboratorio de Mecánica de la Madera. Investigación e Ingeniería de la Madera, 15(1), 3-64. https://www.researchgate.net/publication/335665376_Modulos_de_elasticidad_e_indices_de_calidad_de_maderas_mexicanas_Sintesis_de_datos_del_Laboratorio_de_Mecanica_de_la_Madera
• Sotomayor-Castellanos, J. R., & Macedo-Alquicira, I. (2023). Vibraciones transversales para determinar el módulo dinámico e índice material en multimaterial de madera-malla-adhesivo en Fagus crenata. Revista Internacional de Investigación e Innovación Tecnológica, 11, 39-62. https://www.academia.edu/104221042/Vibraciones_transversales_para_determinar_el_m%C3%B3dulo_din%C3%A1mico_e_%C3%ADndice_material_en_multimaterial_de_madera_malla_adhesivo_en_Fagus_crenata
• Svoboda, T., Sikora, A., Záborský, V., & Gaffová, Z. (2019). Laminated veneer lumber with non-wood components and the effects of selected factors on its bendability. Forests, 10(6), 470. https://doi.org/10.3390/f10060470
• Ulker, O., Imirzi, O., & Burdurlu, E. (2012). The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris L.). BioResources, 7(4), 5581-5592. https://bioresources.cnr.ncsu.edu/resources/the-effect-of-densification-temperature-on-some-physical-and-mechanical-properties-of-scots-pine-pinus-sylvestris-l/
• Wang, B., Bachtiar, E. V., Yan, L., Kasal, B., & Fiore, V. (2019). Flax, basalt, e-glass FRP and their hybrid FRP strengthened wood beams: An experimental study. Polymers, 11(8), 1255. https://doi.org/10.3390/polym11081255
• Wdowiak-Postulak, A., & Brol, J. (2020). Ductility of the tensile zone in bent wooden beams strengthened with CFRP materials. Materials, 13(23), 5451. https://doi.org/10.3390/ma13235451
• Wegst, U. G. K. (2006). Wood for sound. American Journal of Botany, 93(10), 1439-1448. https://doi.org/10.3732/ajb.93.10.1439
• Yusof, A., & Rahman, A. B. (2017). Flexural strengthening of timber beams using carbon fibre reinforced. International Journal of Applied Engineering Research, 12(3), 348-358. https://www.ripublication.com/ijaer17/ijaerv12v3_12.pdf
• Zelinka, S. L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M., Thybring, E. E., & Thygesen, L. G. (2022). Review of wood modification and wood functionalization technologies. Forests, 13(7), 1004. https://doi.org/10.3390/f13071004
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2025 Javier Ramón Sotomayor-Castellanos, Koji Adachi

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)