Dynamic behavior in transverse vibrations of densified, laminated and carbon fiber-reinforced wood
DOI:
https://doi.org/10.33064/iycuaa2025968288Keywords:
Cryptomeria japonica, wood density, wood modification, vibrations, dynamic modulus, sugiAbstract
The modification of wood with lamination, densification, and carbon fiber reinforcement treatments is aimed at improving its technological properties and optimizing its industrial applications. The objective of the research was to determine the densities and dynamic modules of solid, laminated, and reinforced wood of Cryptomeria japonica (sugi). Transverse vibration tests were performed using 36 small test specimens. The treatments of laminating, densifying, and reinforcing with carbon fiber increase the density and dynamic modulus of solid wood. This technological improvement is explained by the effect of densification, the epoxy resin as an adhesive, and the incorporation of carbon fiber as reinforcement. The magnitudes follow the statistical trends of those of woods reported in the literature.
Downloads
References
• Bal, B. C. (2016). Some technological properties of laminated veneer lumber produced with fast-growing poplar and eucalyptus. Maderas: Ciencia y Tecnología, 18(3), 413-424. https://doi.org/10.4067/S0718-221X2016005000037
• Brémaud, I., El Kaïm, Y., Guibal, D., Minato, K., Thibaut, T., & Gril, J. (2012). Characterization and categorization of the diversity in viscoelastic vibrational properties between 98 wood types. Annals of Forest Science, 69(3), 373-386. https://doi.org/10.1007/s13595-011-0166-z
• Dlouhá, J., Alméras, T., Beauchêne, J., Clair, B., & Fournier, M. (2018). Biophysical dependences among functional wood traits. Functional Ecology, 32(12), 2652–2665. https://doi.org/10.1111/1365-2435.13209
• Fang, C. H., Cloutier, A., Blanchet, P., & Koubaa, A. (2012). Densification of wood veneers combined with oil heat treatment. Part II: Hygroscopicity and mechanical properties. BioResources, 7(1), 925-935. https://bioresources.cnr.ncsu.edu/resources/densification-of-wood-veneers-combined-with-oil-heat-treatment-part-ii-hygroscopicity-and-mechanical-properties/
• Faydi, Y., Brancheriau, L., Pot, G., & Collet, R. (2017). Prediction of oak wood mechanical properties based on the statistical exploitation of vibrational response. BioResources, 12(3), 5913-5927. https://bioresources.cnr.ncsu.edu/resources/prediction-of-oak-wood-mechanical-properties-based-on-the-statistical-exploitation-of-vibrational-response/
• Frihart, C. R. (2009). Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology, 23(4), 601-617. https://doi.org/10.1163/156856108X379137
• Gaff, M., Vokatý, V., Babiak, M., & Bal, B. C. (2016). Coefficient of wood bendability as a function of selected factors. Construction and Building Materials, 126, 632-640. https://doi.org/10.1016/j.conbuildmat.2016.09.085
• Gao, Z., Huang, R., Lu, J., Chen, Z., Guo, F., & Zhan, T. (2016). Sandwich compression of wood: Control of creating density gradient on lumber thickness and properties of compressed wood. Wood Science and Technology, 50(4), 833-844. https://doi.org/10.1007/s00226-016-0824-2
• Hayashi, T., & Miyatake, A. (2015). Recent research and development on sugi (Cryptomeria japonica) structural glued laminated timber. Journal of Wood Science, 61, 337-342. https://doi.org/10.1007/s10086-015-1475-x
• International Organization for Standardization. (2014a). ISO 13061-1:2014. Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 1: Determination of moisture content for physical tests. International Organization for Standardization.
• International Organization for Standardization. (2014b). ISO 13061-2:2014. Physical and mechanical properties of wood. Test methods for small clear wood specimens. Part 2: Determination of density for physical and mechanical tests. International Organization for Standardization.
• Ishiguri, F., Kasai, S., Yokota, S., Iizuka, K., & Yoshizawa, N. (2005). Wood quality of sugi (Cryptomeria japonica) grown at four initial spacings. IAWA Journal, 26(3), 375-386. https://doi.org/10.1163/22941932-02603008
• Kandler, G., Lukacevic, M., Zechmeister, C., Wolff, S., & Füssl, J. (2018). Stochastic engineering framework for timber structural elements and its application to glued laminated timber beams. Construction and Building Materials, 190, 573-592. https://doi.org/10.1016/j.conbuildmat.2018.09.129
• Karaman, A., Yildirim, M. N., & Tor, O. (2021). Bending characteristics of laminated wood composites constructed with black pine wood and aramid fiber reinforced fabric. Wood Research, 66(2), 309-320. https://doi.org/10.37763/wr.1336-4561/66.2.309320
• Kliger, I. R., Haghani, R., Brunner, M., Harte, A. M., & Schober, K. (2016). Wood-based beams strengthened with FRP laminates: Improved performance with pre-stressed systems. European Journal of Wood and Wood Products, 74, 319-330. https://doi.org/10.1007/s00107-015-0970-5
• Kretschmann, D., & Hernandez, R. (2006). Grading timber and glued structural members. En J. C. F. Walker, Primary wood processing: Principles and practice (pp. 347-381). Springer. https://doi.org/10.1007/1-4020-4393-7
• Kutnar, A., & Šernek, M. (2007). Densification of wood. Zbornik gozdarstva in lesarstva, 82, 53-62. http://eprints.gozdis.si/id/eprint/198
• Macedo-Alquicira, I., Bedolla-Arrollo, J., Raya-González, D., Rutiaga-Quiñones, J. G., Castro-Sánchez, F. J., & Sotomayor-Castellanos, J. R. (2022). Pruebas de torsión dinámica de madera sólida y de multimaterial de Fagus crenata. Bosques Latitud Cero, 12(2), 93-102. https://www.academia.edu/94061774/Pruebas_de_torsi%C3%B3n_din%C3%A1mica_de_madera_s%C3%B3lida_y_de_multimaterial_de_Fagus_crenata
• Niklas, K. J., & Spatz, H. C. (2010). Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 97(10), 1587-1594. https://doi.org/10.3732/ajb.1000150
• Novosel, A., Sedlar, T., Čizmar, D., Turkulin, H., & Živković, V. (2021). Structural reinforcement of bi-directional oak-wood lamination by carbon fibre implants. Construction and Building Materials, 287, 123073. https://doi.org/10.1016/j.conbuildmat.2021.123073
• Rescalvo, F. J., Duriot, R., Pot, G., Gallego, A., & Denaud, L. (2020). Enhancement of bending properties of Douglas-fir and poplar laminate veneer lumber (LVL) beams with carbon and basalt fibers reinforcement. Construction and Building Materials, 263, 120185. https://doi.org/10.1016/j.conbuildmat.2020.120185
• Román-Jordán, E., Esteban, L. G., de Palacios, P., & Fernández, F. G. (2017). Comparative wood anatomy of the Cupressaceae and correspondence with phylogeny, with special reference to the monotypic taxa. Plant Systematics and Evolution, 303, 203-219. https://doi.org/10.1007/s00606-016-1364-9
• Roohnia, M., & Brancheriau, L. (2015). Orientation and position effects of a local heterogeneity on flexural vibration frequencies in wooden beams. CERNE, 21(2), 339-344. https://doi.org/10.1590/01047760201521021674
• Schober, K. U., Harte, A. M., Kliger, R., Jockwer, R., Xu, Q., & Chen, J.-F. (2015). FRP reinforcement of timber structures. Construction and Building Materials, 97, 106-118. https://doi.org/10.1016/j.conbuildmat.2015.06.020
• Sikora, A., Gaffová, Z., Rajnoha, R., Šatanová, A., & Kminiak, R. (2017). Deflection of densified beech and aspen woods as a function of selected factors. BioResources, 12(2), 3192-3210. https://doi.org/10.15376/biores.12.2.3192-3210
• Sikora, A., Svoboda, T., Záborský, V., & Gaffová, Z. (2019). Effect of selected factors on the bending deflection at the limit of proportionality and at the modulus of rupture in laminated veneer lumber. Forests, 10(5), 401. https://doi.org/10.3390/f10050401
• Śliwa-Wieczorek, K., Ostrowski, K. A., Jaskowska-Lemańska, J., & Karolak, A. (2021). The influence of CFRP sheets on the load-bearing capacity of the glued laminated timber beams under bending test. Materials, 14(14), 4019. https://doi.org/10.3390/ma14144019
• Sotomayor-Castellanos, J. R. (2019). Módulos de elasticidad e índices de calidad de maderas mexicanas. Síntesis de datos del Laboratorio de Mecánica de la Madera. Investigación e Ingeniería de la Madera, 15(1), 3-64. https://www.researchgate.net/publication/335665376_Modulos_de_elasticidad_e_indices_de_calidad_de_maderas_mexicanas_Sintesis_de_datos_del_Laboratorio_de_Mecanica_de_la_Madera
• Sotomayor-Castellanos, J. R., & Macedo-Alquicira, I. (2023). Vibraciones transversales para determinar el módulo dinámico e índice material en multimaterial de madera-malla-adhesivo en Fagus crenata. Revista Internacional de Investigación e Innovación Tecnológica, 11, 39-62. https://www.academia.edu/104221042/Vibraciones_transversales_para_determinar_el_m%C3%B3dulo_din%C3%A1mico_e_%C3%ADndice_material_en_multimaterial_de_madera_malla_adhesivo_en_Fagus_crenata
• Svoboda, T., Sikora, A., Záborský, V., & Gaffová, Z. (2019). Laminated veneer lumber with non-wood components and the effects of selected factors on its bendability. Forests, 10(6), 470. https://doi.org/10.3390/f10060470
• Ulker, O., Imirzi, O., & Burdurlu, E. (2012). The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris L.). BioResources, 7(4), 5581-5592. https://bioresources.cnr.ncsu.edu/resources/the-effect-of-densification-temperature-on-some-physical-and-mechanical-properties-of-scots-pine-pinus-sylvestris-l/
• Wang, B., Bachtiar, E. V., Yan, L., Kasal, B., & Fiore, V. (2019). Flax, basalt, e-glass FRP and their hybrid FRP strengthened wood beams: An experimental study. Polymers, 11(8), 1255. https://doi.org/10.3390/polym11081255
• Wdowiak-Postulak, A., & Brol, J. (2020). Ductility of the tensile zone in bent wooden beams strengthened with CFRP materials. Materials, 13(23), 5451. https://doi.org/10.3390/ma13235451
• Wegst, U. G. K. (2006). Wood for sound. American Journal of Botany, 93(10), 1439-1448. https://doi.org/10.3732/ajb.93.10.1439
• Yusof, A., & Rahman, A. B. (2017). Flexural strengthening of timber beams using carbon fibre reinforced. International Journal of Applied Engineering Research, 12(3), 348-358. https://www.ripublication.com/ijaer17/ijaerv12v3_12.pdf
• Zelinka, S. L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M., Thybring, E. E., & Thygesen, L. G. (2022). Review of wood modification and wood functionalization technologies. Forests, 13(7), 1004. https://doi.org/10.3390/f13071004
Downloads
Published
How to Cite
License
Copyright (c) 2025 Javier Ramón Sotomayor-Castellanos, Koji Adachi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)