Efecto de la pasteurización tradicional y con ultrasonido sobre la capacidad antioxidante total del jugo de granada (Punica granatum)

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2025967828

Palabras clave:

Capacidad antioxidante total, granada, pasteurización, ultrasonido, características físicoquímicas, evaluación sensorial

Resumen

El objetivo de este estudio fue evaluar las características fisicoquímicas, sensoriales, microbiológicas y capacidad antioxidante total (CAT) en jugo de granada (Punica granatum), al cual se aplicaron dos métodos de conservación independientes, uno a baja temperatura y tiempo prolongado (LTLT, por sus siglas en inglés) y otro sometido a ultrasonido (T ultra). Las características fisicoquímicas se conservaron en todos los casos, mientras el color se afectó para ambos métodos, a excepción de un tratamiento con pasteurización tradicional y un tratamiento con ultrasonido. La CAT en las muestras con ambos tratamientos aumentó significativamente, pero la técnica de DPPH mostró mayor potencial antioxidante en el jugo asistido con ultrasonido (> 100 Trolox, µM) en comparación a la pasteurización LTLT (<91 Trolox, µM), posiblemente por una menor degradación de los compuestos fenólicos. El jugo asistido con ultrasonido a 20 ºC durante 30 y 60 minutos fue insuficiente para inhibir el crecimiento de levaduras...

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Norma Angélica Caudillo-Ortega, Instituto Tecnológico Superior de Guanajuato

Departamento de Ingeniería en Industrias Alimentarias

Verónica Vallejo-Yebra, Instituto Tecnológico Superior de Guanajuato

Departamento de Ingeniería en Industrias Alimentarias

Claudia Rivera-Domínguez, Instituto Tecnológico Superior de Guanajuato

Departamento de Ingeniería Industrial

Edgar Enrique Vázquez-Ramírez, Instituto Tecnológico Superior de Guanajuato

Departamento de Ingeniería Mecatrónica

Citas

• Azam, S. M. R., Ma, H., Xu, B., Devi, S., Stanley, S. L., Siddique, M. A. B., Mujumdar, A. S., & Zhu, J. (2021). Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. LWT, 143, 111147. https://doi.org/https://doi.org/10.1016/j.lwt.2021.111147

• Azmat, F., Safdar, M., Ahmad, H., Khan, M. R. J., Abid, J., Naseer, M. S., Aggarwal, S., Imran, A., Khalid, U., Zahra, S. M., Islam, F., Cheema, S. A., Shehzadi, U., Ali, R., Kinki, A. B., Ali, Y. A., & Suleria, H. A. R. (2024). Phytochemical profile, nutritional composition of pomegranate peel and peel extract as a potential source of nutraceutical: A comprehensive review. Food Science & Nutrition, 12(2), 661–674. https://doi.org/10.1002/fsn3.3777

• Baqueiro-Peña, I., & Guerrero-Beltrán, J. Á. (2017). Physicochemical and antioxidant characterization of Justicia spicigera. Food Chemistry, 218, 305–312. https://doi.org/10.1016/j.foodchem.2016.09.078

• Barba Evia, J. R. (2018). No Title. México y El Reto de Las Enfermedades Crónicas No Transmisibles. El Laboratorio También Juega Un Papel Importante, 4–17.

• Basurto, E., Ochoa, A., González-Herrera, S., & Gallegos-Infante, J. (2023). Características fisicoquímicas y evaluación sensorial de bebidas mixtas camote-manzana y camote-piña: Physico-chemical parameters and sensory evaluation of sweet potato-apple and sweet potato-pineapple blended beverages. TECNOCIENCIA Chihuahua, 17, e1137. https://doi.org/10.54167/tch.v17i1.1137

• Berenguer, M., Vegara, S., Barrajón, E., Saura, D., Valero, M., & Martí, N. (2016). Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains. Food Chemistry, 190, 848–855. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.06.027

• Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. https://doi.org/https://doi.org/10.1016/j.ultsonch.2020.105293

• Dasenaki, M. E., Drakopoulou, S. K., Aalizadeh, R., & Thomaidis, N. S. (2019). Targeted and Untargeted Metabolomics as an Enhanced Tool for the Detection of Pomegranate Juice Adulteration. Foods (Basel, Switzerland), 8(6). https://doi.org/10.3390/foods8060212

• Dikmetas, D. N., Acar, E. G., Ceylan, F. D., İlkadım, F., Özer, H., & Karbancioglu-Guler, F. (2025). Functional fermented fruit juice production and characterization by using water kefir grains. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-025-06209-y

• Elfalleh, W., Nasri, N., Marzougui, N., Thabti, I., M’rabet, A., Yahya, Y., Lachiheb, B., Guasmi, F., & Ferchichi, A. (2009). Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (Punica granatum) ecotypes. International Journal of Food Sciences and Nutrition, 60 Suppl 2, 197–210. https://doi.org/10.1080/09637480903067037

• Encuesta Nacional de Salud y Nutrición. (2021). Enfermedades no transmisibles en México. Enfermedades No Transmisibles En México.

• Esposto, S., Veneziani, G., Taticchi, A., Urbani, S., Selvaggini, R., Sordini, B., Daidone, L., Gironi, G., & Servili, M. (2021). Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices. In Antioxidants (Vol. 10, Issue 9). https://doi.org/10.3390/antiox10091381

• Haridy, L., Al Thaiban, M., & Alsrwani, A. (2020). Physio-chemical Properties of Fresh, Clarified and Commercial Brands Pomegranate Juice.

• Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1

• Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203–235. https://doi.org/10.1146/annurev.food.102308.124129

• Lauteri, C., Ferri, G., Piccinini, A., Pennisi, L., & Vergara, A. (2023). Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. In Foods (Vol. 12, Issue 6). https://doi.org/10.3390/foods12061212

• Lin, Y.-S., Huang, W.-Y., Ho, P.-Y., Hu, S.-Y., Lin, Y.-Y., Chen, C.-Y., Chang, M.-Y., & Huang, S.-L. (2020). Effects of Storage Time and Temperature on Antioxidants in Juice from Momordica charantia L. and Momordica charantia L. var. abbreviata Ser. Molecules (Basel, Switzerland), 25(16). https://doi.org/10.3390/molecules25163614

• López, P. (1995). Peroxidase Stability and Reactivation after Heat Treatment and Manothermosonication. Journal of Food Science. https://www.academia.edu/8309733/Peroxidase_Stability_and_Reactivation_after_Heat_Treatment_and_Manothermosonication

• Lv, R., Zou, M., Chantapakul, T., Chen, W., Muhammad, A. I., Zhou, J., Ding, T., Ye, X., & Liu, D. (2019). Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores. Applied Microbiology and Biotechnology, 103(5), 2329–2338. https://doi.org/10.1007/s00253-018-9559-3

• Majid, I., Nayik, G., & Nanda, V. (2015). Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1, 0. https://doi.org/10.1080/23311932.2015.1071022

• Marcus, R. (1998). The measurement of color. In: Nassau K, editor. Color for science, art and technology. Amsterdam, 31–39.

• Menelli, G. S., Fracalossi, K. L., Lepaus, B. M., & De São José, J. F. B. (2021). Effects of high-intensity ultrasonic bath on the quality of strawberry juice. CyTA - Journal of Food, 19(1), 501–510. https://doi.org/10.1080/19476337.2021.1918768

• NMX-F-102-NORMEX-. (2010). ALIMENTOS-DETERMINACION DE ACIDEZ TITULABLE EN ALIMENTOS-METODO DE ENSAYO (PRUEBA) (ESTA NORMA CANCELA A LA NMX-F-102-S-1978).

• NOM-092_SSA1-. (1994). Bienes y servicios. Método para la cuenta de bacterias aerobias en placa.

• NOM-111-SSA1-. (1994). ienes y servicios. Método para la cuenta de mohos y levaduras en alimentos.

• NOM-173-SE-. (2021). Jugos, agua de coco, néctares, bebidas no alcohólicas con contenido de vegetal o fruta u hortaliza y bebidas saborizadas no alcohólicas preenvasadas-Denominaciones-Especificaciones-Información comercial y métodos de prueba.

• NOM-210-SSA1. (2014). Productos y servicios. Métodos de prueba microbiológicos. Determinación de microorganismos indicadores. Determinación de microorganismos patógenos.

• Noor, R., Islam, Z., Munshi, S., & Rahman, F. (2013). Influence of Temperature on Escherichia coli Growth in Different Culture Media. Journal of Pure and Applied Microbiology, 7.

• Ok, E., Aria, J., Jose, D., & Diego, C. (2025). Impact of Heat Processing (Boiling, Roasting, Frying) on Nutrient Retention.

• Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/https://doi.org/10.1016/S0891-5849(98)00315-3

• Rojas, M. L., Miano, A. C., Aguilar, K., & Augusto, P. E. D. (2020). Chapter 8 - Emerging Technologies for Noncarbonated Beverages Processing (C. M. B. T.-T. in N. B. Galanakis (ed.); pp. 233–261). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816938-4.00008-2

• Soro, A. B., Oliveira, M., O’Donnell, C. P., & Tiwari, B. K. (2021). Ultrasound assisted modulation of yeast growth and inactivation kinetics. Ultrasonics Sonochemistry, 80, 105819. https://doi.org/10.1016/j.ultsonch.2021.105819

• Tehranifar, A., Zarei, M., Nemati, Z., Esfandiyari, B., & Vazifeshenas, M. R. (2010). Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Scientia Horticulturae, 126(2), 180–185. https://doi.org/https://doi.org/10.1016/j.scienta.2010.07.001

• Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M., & Amir, R. (2007). Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry, 55(23), 9559–9570. https://doi.org/10.1021/jf071413n

• Valdés Miramontes, E., Castaneda-Saucedo, M., Campos, E., Castillo, Z., Anaya, J., Sánchez-Caballero, B., & Luján, M. (2004). Potencial antioxidante de tres subproductos de granada (Punica granatum L.). Archivos Latinoamericanos de Nutrición, 74, 155–164. https://doi.org/10.37527/2024.74.3.001

• Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 1(3), 211–218. https://doi.org/https://doi.org/10.1016/S1466-8564(00)00020-5

• Xiang, Y., Liu, Z., Liu, Y., Dong, B., Yang, C., & Li, H. (2024). Ultrasound-assisted extraction, optimization, and purification of total flavonoids from Daphnegenkwa and analysis of their antioxidant, anti-inflammatory, and analgesic activities. Ultrasonics Sonochemistry, 111, 107079. https://doi.org/https://doi.org/10.1016/j.ultsonch.2024.107079

• Zarei, M., Azizi, M., & Bashir-Sadr, Z. (2011). Evaluation of physicochemical characteristics of pomegranate (Punica granatum L.) fruit during ripening. Fruits, 66, 121–129. https://doi.org/10.1051/fruits/2011021

• Zhuang, H., Du, J., & Wang, Y. (2011). Antioxidant capacity changes of 3 cultivar Chinese pomegranate (Punica granatum L.) juices and corresponding wines. Journal of Food Science, 76(4), C606-11. https://doi.org/10.1111/j.1750-3841.2011.02149.x

• Azam, S. M. R., Ma, H., Xu, B., Devi, S., Stanley, S. L., Siddique, M. A. B., Mujumdar, A. S., & Zhu, J. (2021). Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. LWT, 143, 111147. https://doi.org/https://doi.org/10.1016/j.lwt.2021.111147

• Azmat, F., Safdar, M., Ahmad, H., Khan, M. R. J., Abid, J., Naseer, M. S., Aggarwal, S., Imran, A., Khalid, U., Zahra, S. M., Islam, F., Cheema, S. A., Shehzadi, U., Ali, R., Kinki, A. B., Ali, Y. A., & Suleria, H. A. R. (2024). Phytochemical profile, nutritional composition of pomegranate peel and peel extract as a potential source of nutraceutical: A comprehensive review. Food Science & Nutrition, 12(2), 661–674. https://doi.org/10.1002/fsn3.3777

• Baqueiro-Peña, I., & Guerrero-Beltrán, J. Á. (2017). Physicochemical and antioxidant characterization of Justicia spicigera. Food Chemistry, 218, 305–312. https://doi.org/10.1016/j.foodchem.2016.09.078

• Barba Evia, J. R. (2018). No Title. México y El Reto de Las Enfermedades Crónicas No Transmisibles. El Laboratorio También Juega Un Papel Importante, 4–17.

• Basurto, E., Ochoa, A., González-Herrera, S., & Gallegos-Infante, J. (2023). Características fisicoquímicas y evaluación sensorial de bebidas mixtas camote-manzana y camote-piña: Physico-chemical parameters and sensory evaluation of sweet potato-apple and sweet potato-pineapple blended beverages. TECNOCIENCIA Chihuahua, 17, e1137. https://doi.org/10.54167/tch.v17i1.1137

• Berenguer, M., Vegara, S., Barrajón, E., Saura, D., Valero, M., & Martí, N. (2016). Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains. Food Chemistry, 190, 848–855. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.06.027

• Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. https://doi.org/https://doi.org/10.1016/j.ultsonch.2020.105293

• Dasenaki, M. E., Drakopoulou, S. K., Aalizadeh, R., & Thomaidis, N. S. (2019). Targeted and Untargeted Metabolomics as an Enhanced Tool for the Detection of Pomegranate Juice Adulteration. Foods (Basel, Switzerland), 8(6). https://doi.org/10.3390/foods8060212

• Dikmetas, D. N., Acar, E. G., Ceylan, F. D., İlkadım, F., Özer, H., & Karbancioglu-Guler, F. (2025). Functional fermented fruit juice production and characterization by using water kefir grains. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-025-06209-y

• Elfalleh, W., Nasri, N., Marzougui, N., Thabti, I., M’rabet, A., Yahya, Y., Lachiheb, B., Guasmi, F., & Ferchichi, A. (2009). Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (Punica granatum) ecotypes. International Journal of Food Sciences and Nutrition, 60 Suppl 2, 197–210. https://doi.org/10.1080/09637480903067037

• Encuesta Nacional de Salud y Nutrición. (2021). Enfermedades no transmisibles en México. Enfermedades No Transmisibles En México.

• Esposto, S., Veneziani, G., Taticchi, A., Urbani, S., Selvaggini, R., Sordini, B., Daidone, L., Gironi, G., & Servili, M. (2021). Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices. In Antioxidants (Vol. 10, Issue 9). https://doi.org/10.3390/antiox10091381

• Haridy, L., Al Thaiban, M., & Alsrwani, A. (2020). Physio-chemical Properties of Fresh, Clarified and Commercial Brands Pomegranate Juice.

• Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1

• Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203–235. https://doi.org/10.1146/annurev.food.102308.124129

• Lauteri, C., Ferri, G., Piccinini, A., Pennisi, L., & Vergara, A. (2023). Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. In Foods (Vol. 12, Issue 6). https://doi.org/10.3390/foods12061212

• Lin, Y.-S., Huang, W.-Y., Ho, P.-Y., Hu, S.-Y., Lin, Y.-Y., Chen, C.-Y., Chang, M.-Y., & Huang, S.-L. (2020). Effects of Storage Time and Temperature on Antioxidants in Juice from Momordica charantia L. and Momordica charantia L. var. abbreviata Ser. Molecules (Basel, Switzerland), 25(16). https://doi.org/10.3390/molecules25163614

• López, P. (1995). Peroxidase Stability and Reactivation after Heat Treatment and Manothermosonication. Journal of Food Science. https://www.academia.edu/8309733/Peroxidase_Stability_and_Reactivation_after_Heat_Treatment_and_Manothermosonication

• Lv, R., Zou, M., Chantapakul, T., Chen, W., Muhammad, A. I., Zhou, J., Ding, T., Ye, X., & Liu, D. (2019). Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores. Applied Microbiology and Biotechnology, 103(5), 2329–2338. https://doi.org/10.1007/s00253-018-9559-3

• Majid, I., Nayik, G., & Nanda, V. (2015). Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1, 0. https://doi.org/10.1080/23311932.2015.1071022

• Marcus, R. (1998). The measurement of color. In: Nassau K, editor. Color for science, art and technology. Amsterdam, 31–39.

• Menelli, G. S., Fracalossi, K. L., Lepaus, B. M., & De São José, J. F. B. (2021). Effects of high-intensity ultrasonic bath on the quality of strawberry juice. CyTA - Journal of Food, 19(1), 501–510. https://doi.org/10.1080/19476337.2021.1918768

• NMX-F-102-NORMEX-. (2010). ALIMENTOS-DETERMINACION DE ACIDEZ TITULABLE EN ALIMENTOS-METODO DE ENSAYO (PRUEBA) (ESTA NORMA CANCELA A LA NMX-F-102-S-1978).

• NOM-092_SSA1-. (1994). Bienes y servicios. Método para la cuenta de bacterias aerobias en placa.

• NOM-111-SSA1-. (1994). ienes y servicios. Método para la cuenta de mohos y levaduras en alimentos.

• NOM-173-SE-. (2021). Jugos, agua de coco, néctares, bebidas no alcohólicas con contenido de vegetal o fruta u hortaliza y bebidas saborizadas no alcohólicas preenvasadas-Denominaciones-Especificaciones-Información comercial y métodos de prueba.

• NOM-210-SSA1. (2014). Productos y servicios. Métodos de prueba microbiológicos. Determinación de microorganismos indicadores. Determinación de microorganismos patógenos.

• Noor, R., Islam, Z., Munshi, S., & Rahman, F. (2013). Influence of Temperature on Escherichia coli Growth in Different Culture Media. Journal of Pure and Applied Microbiology, 7.

• Ok, E., Aria, J., Jose, D., & Diego, C. (2025). Impact of Heat Processing (Boiling, Roasting, Frying) on Nutrient Retention.

• Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/https://doi.org/10.1016/S0891-5849(98)00315-3

• Rojas, M. L., Miano, A. C., Aguilar, K., & Augusto, P. E. D. (2020). Chapter 8 - Emerging Technologies for Noncarbonated Beverages Processing (C. M. B. T.-T. in N. B. Galanakis (ed.); pp. 233–261). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816938-4.00008-2

• Soro, A. B., Oliveira, M., O’Donnell, C. P., & Tiwari, B. K. (2021). Ultrasound assisted modulation of yeast growth and inactivation kinetics. Ultrasonics Sonochemistry, 80, 105819. https://doi.org/10.1016/j.ultsonch.2021.105819

• Tehranifar, A., Zarei, M., Nemati, Z., Esfandiyari, B., & Vazifeshenas, M. R. (2010). Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Scientia Horticulturae, 126(2), 180–185. https://doi.org/https://doi.org/10.1016/j.scienta.2010.07.001

• Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M., & Amir, R. (2007). Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agricultural and Food Chemistry, 55(23), 9559–9570. https://doi.org/10.1021/jf071413n

• Valdés Miramontes, E., Castaneda-Saucedo, M., Campos, E., Castillo, Z., Anaya, J., Sánchez-Caballero, B., & Luján, M. (2004). Potencial antioxidante de tres subproductos de granada (Punica granatum L.). Archivos Latinoamericanos de Nutrición, 74, 155–164. https://doi.org/10.37527/2024.74.3.001

• Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 1(3), 211–218. https://doi.org/https://doi.org/10.1016/S1466-8564(00)00020-5

• Xiang, Y., Liu, Z., Liu, Y., Dong, B., Yang, C., & Li, H. (2024). Ultrasound-assisted extraction, optimization, and purification of total flavonoids from Daphnegenkwa and analysis of their antioxidant, anti-inflammatory, and analgesic activities. Ultrasonics Sonochemistry, 111, 107079. https://doi.org/https://doi.org/10.1016/j.ultsonch.2024.107079

• Zarei, M., Azizi, M., & Bashir-Sadr, Z. (2011). Evaluation of physicochemical characteristics of pomegranate (Punica granatum L.) fruit during ripening. Fruits, 66, 121–129. https://doi.org/10.1051/fruits/2011021

• Zhuang, H., Du, J., & Wang, Y. (2011). Antioxidant capacity changes of 3 cultivar Chinese pomegranate (Punica granatum L.) juices and corresponding wines. Journal of Food Science, 76(4), C606-11. https://doi.org/10.1111/j.1750-3841.2011.02149.x

Publicado

2025-09-30

Cómo citar

Caudillo-Ortega, N. A., Vallejo-Yebra, V., Rivera-Domínguez, C., Vázquez-Ramírez, E. E., & Rosales-Bravo, H. (2025). Efecto de la pasteurización tradicional y con ultrasonido sobre la capacidad antioxidante total del jugo de granada (Punica granatum). Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (96), e7828. https://doi.org/10.33064/iycuaa2025967828

Número

Sección

Artículos de Investigación

Categorías