Adsorción de metales pesados (Hg2+, Cu2+ y Ni2+) en NTC utilizando redes neuronales Feed forward backprop y Elman backprop

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2023894207

Palabras clave:

Energía de Gibbs, metales pesados, Redes neuronales artificiales, Hyperchem, Gaussian, NTC

Resumen

En el presente trabajo se estudiaron sistemas de adsorción mono y multicomponente de metales pesados (Hg2+, Cu2+ y Ni2+) como adsorbatos y nanotubos de carbono (NTC) como adsorbentes. Primero, se determinaron las propiedades termodinámicas y QSAR a 298.15 y 30815K utilizando simulación computacional. Posteriormente, se desarrollaron redes neuronales artificiales Feedforward backprop y Elman backprop, en donde la red con mayor precisión de las propiedades termodinámicas y QSAR fue, la Elman Backprop con la función Logsig utilizando 5 y 3 neuronas en la capa oculta a 298.15 y 308.15 K, por otro lado, las redes tuvieron una r2 de 0.999, y un error cuadrático medio de 0.021, 0.024 y 0.214 respectivamente.

Descargas

Métricas

Visualizaciones del PDF
204
May 31 '23Jun 01 '23Jun 04 '23Jun 07 '23Jun 10 '23Jun 13 '23Jun 16 '23Jun 19 '23Jun 22 '23Jun 25 '23Jun 28 '237.0
|

Citas

• Allred, A. (1961). Electronegativity values from thermochemical data. Journal of Inorganic and Nuclear Chemistry, 17(3-4), 215-221. doi: 10.1016/0022-1902(61)80142-5

• Arora, R. (2019). Adsorption of heavy metals–A review. Materials today: Proceedings, 18(7), 4745-4750. doi: 10.1016/j.matpr.2019.07.462

• Asfaram, A., Ghaedi, M., Ahmadi Azqhandi, M. H., Goudarzi, A., Hajati, S. (2017). Ultrasound-assisted binary adsorption of dyes onto Mn@ CuS/ZnS-NC-AC as a novel adsorbent: Application of chemometrics for optimization and modeling. Journal of Industrial and Engineering Chemistry, 54, 377-388. doi: 10.1016/j.jiec.2017.06.018

• Assefi, P., Ghaedi, M., Ansari, A., Habibi, M. H., & Momeni, M. S. (2014). Artificial neural network optimization for removal of hazardous dye Eosin Y from aqueous solution using Co2O3-NP-AC: Isotherm and kinetics study. Journal of Industrial and Engineering Chemistry, 20(5), 2905-2913. doi: 10.1016/j.jiec.2013.11.027

• Chairez, I., García-Peña, I., Cabrera, A. (2009). Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network. Journal of Process Control, 19(7), 1103-1110. doi: 10.1016/j.jprocont.2008.12.009

• Fiyadh, S., AlOmar, M., Jaafar, W. Z. B., AlSaadi, M. A., Fayaed, S. S., Koting, S. B., Lai, S. H., Chow, M. F., Ahmed, A. N., El-Shafie, A. (2019). Artificial neural network approach for modelling of mercury ions removal from water using functionalized CNTs with deep eutectic solvent. International Journal of Molecular Sciences, 20(17), 4206. doi: 10.3390/ijms20174206

• Ghaedi, A. M., Vafaei, A. (2017). Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review. Advances in Colloid and Interface Science, 245, 20-39. doi: 10.1016/j.cis.2017.04.015

• Gupta, S. S., Bhattacharyya, K. G. (2006). Adsorption of Ni(II) on clays. Journal of Colloid and Interface Science, 295(1), 21-32. doi: 10.1016/j.jcis.2005.07.073

• Kausar, A., Iqbal, M., Javed, A., Aftab, K., Bhatti, H. N., Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395-407. doi: 10.1016/j.molliq.2018.02.034

• Kermani, B. G., Schiffman, S. S., Nagle, H. T. (2005). Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors and Actuators B: Chemical, 110(1), 13-22. doi: 10.1016/j.snb.2005.01.008

• Khan, T., Binti A. M. T., Isa, M., Ghanim, A., Beddu, S., Jusoh, H., Iqbal, M. S., Ayele, G. T., Jami, M. S. (2020). Modeling of Cu (II) Adsorption from an aqueous solution using an artificial neural network (ANN). Molecules, 25(14), 3263. doi: 10.3390/molecules25143263

• Kumar, K. V., & Porkodi, K. (2009). Modelling the solid–liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chemical Engineering Journal, 148(1), 20-25. doi: 10.1016/j.cej.2008.07.026

• Meek, S. T., Teich-McGoldrick, S. l., Perry, J. J., Greathouse, J. A., Allendorf, M. D. (2012). Effects of polarizability on the adsorption of noble gases at low pressures in monohalogenated isoreticular metal–organic frameworks. The Journal of Physical Chemistry C, 116(37), 19765-19772. doi: 10.1021/jp303274m

• Morse, G., Jones, R., Thibault, J., Tezel, F. H. (2011). Neural network modelling of adsorption isotherms. Adsorption, 17(2), 303-309. doi: 10.1007/s10450-010-9287-1

• Pauletto, P. S., Dotto, G. l., Salau, N. P. (2020). Optimal artificial neural network design for simultaneous modeling of multicomponent adsorption. Journal of Molecular Liquids, 320(A), 114418. doi: 10.1016/j.molliq.2020.114418

• Rad, l. R., Anbia, M. (2021). Zeolite-based composites for the adsorption of toxic matters from water: A review. Journal of Environmental Chemical Engineering, 9(5), 106088. doi: 10.1016/j.jece.2021.106088

• Rozylo, J., Malinowska, I., Poniewaz, M. (1984). The influence of the specific surface area of adsorbent upon the optimization of the process of adsorption thin-layer chromatography. Journal of Liquid Chromatography, 7(14), 2697-2710. doi: 10.1080/01483918408067037

• Shahryari, Z., Mohebbi, A., Soltani Goharrizi, A., Forghani, A. A. (2013). Application of artificial neural networks for formulation and modeling of dye adsorption onto multiwalled carbon nanotubes. Research on Chemical Intermediates, 39(8), 3595- 3609. doi: 10.1007/s11164-012-0865-6

• Sun, Y., Zhou, S., Pan, S. Y., Zhu, S., Yu, Y., Zheng, H. (2020). Performance evaluation and optimization of flocculation process for removing heavy metal. Chemical Engineering Journal, 385, 123911. doi: 10.1016/j.cej.2019.123911

• Tanzifi, M., Hosseini, S. H., Kiadehi, A. D., Olazar, M., Karimipour, K., Rezaiemehr, R., Ali, I. (2017). Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: kinetic, isotherm and thermodynamic studies. Journal of Molecular Liquids, 244, 189-200. doi: 10.1016/j.molliq.2017.08.122

• Tanzifi, M., Yaraki, M. T., Kiadehi, A. D., Hosseini, S. H., Olazar, M., Bharti, A. K., Agarwal, S., Gupta, V. K., Kazemi, A. (2018). Adsorption of amido black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigation and artificial neural network modeling. Journal of Colloid and Interface Science, 510, 246-261. doi: 10.1016/j.jcis.2017.09.055

• Vardhan, K. H., Kumar, P. S., Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. doi: 10.1016/j.molliq.2019.111197

• Yildiz, S. (2017). Artificial neural network (ANN) approach for modeling Zn (II) adsorption in batch process. Korean Journal of Chemical Engineering, 34(9), 2423-2434. doi: 10.1007/s11814-017-0157-3

• Yunus, Z. M., Al-gheethi, A., Othman, N., Hamdan, R., Ruslan, N. N. (2022). Advanced methods for activated carbon from agriculture wastes: A comprehensive review. International Journal of Environmental Analytical Chemistry, 102(1), 134-158. doi: 10.1080/03067319.2020.1717477

• Zaimee, M. Z. A., Sarjadi, M. S., Rahman, M. l. (2021). Heavy metals removal from water by efficient adsorbents. Water, 13(19), 2659. doi: 10.3390/w13192659

Publicado

2023-05-31

Cómo citar

Rangel-Vázquez, N. A., & Ávila-Camacho, B. A. (2023). Adsorción de metales pesados (Hg2+, Cu2+ y Ni2+) en NTC utilizando redes neuronales Feed forward backprop y Elman backprop. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (89). https://doi.org/10.33064/iycuaa2023894207

Número

Sección

Artículos de Investigación

Categorías