Empirical patterns of the mexican industrial structure: Evidence of Zipf´s Law

Authors

  • Francisco Javier Benita-Maldonado Autonomous University of Nuevo León
  • Júnior Alfredo Martínez-Hernández University of Guadalajara

DOI:

https://doi.org/10.33064/iycuaa2011524592

Keywords:

Power Law, Zipf’s Law, economic aggregation, industrial organization, Econometrics

Abstract

Recently, in the field of social sciences, a large number of empirical patterns and regularities traditionally associated with the natural sciences have been found. Particularly, in economic science, empirical evidence has been found around the existence of economic phenomena governed by a type of regularity known as Power Law. Phenomena of economic aggregation, such as the distribution of income and wealth, the growth of cities, the returns on financial assets, and stock market transaction volumes, are especially conditioned by a Power Law, called Zipf's Law. This article presents sufficient empirical evidence to affirm the validity of Zipf's Law in the case of the industrial structure in Mexico. Using the SCIAN classification, the structure of 21 industrial subsectors is analyzed. By using four methods, the power exponent is found to tend to its theoretical expected value.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Francisco Javier Benita-Maldonado, Autonomous University of Nuevo León

Faculty of Economics

Júnior Alfredo Martínez-Hernández, University of Guadalajara

Master in Economics, Department of Quantitative Methods

References

DE LOS COBOS, S.; GODDARD, M.; GUTIÉRREZ, A., La Ley de Zipf en el crecimiento demográfico de México, presentado en XV SIGEF Congress, Economic and Financial Crisis: New Challenges and Perspectives , Lugo, España, 170- 179, 2009 .

GABAIX, X., Power Laws, The New Po/grave Dictionary of Economics, 2nd Edition Eds. Steven N. Durlauf and Laurence E. Blume. Palgrave Macmillan, New York, 2008.

GABAIX, X .; IOANNIDES, Y., The Evolution of City Size Distributions. Handbook of Regional and Urban Economics. North-Holland. Vol. 4, Chapter 53, pp. 2341-2378, 2004.

GABAIX, X., Power Laws in Economics and Finance. Annual Review of Economics. Vol. 1, pp. 255-293, 2009.

GABAIX, X.; IBRAGIMOV, R., Rank- 1/2: A Simple Way to lmprove the OLS Estimation of Tail Exponents. Journal of Business Economics and Statistics. Vol. 29, No. 1, pp. 24-39' 201 1.

INEGI., XV Censo Industrial. Censo Económico 1999. Aguascalientes: INEGI, 2001.

INEGI, XVI Censo Industrial. Censo Económico 2004. Aguascalientes: INEGI, 2005.

INEGI, XVII Censo Industrial. Censo Económico 2009. Aguascalientes: INEGI, 201O.

SIMON, H., On a class of skew distribution functions.Biometrika. Vol. 44, pp. 425-440, 1955.

URZÚA, C., Las ciudades mexicanas no siguen la ley de Zipf,Estudios demográficos y urbanos . Vol. 16, pp. 661- 669, 2001.

URZÚA, C., Testing for Zipf’s law: A common pitfall. EGAP. Documentos de trabajo, 2010.

Published

2011-08-31

How to Cite

Benita-Maldonado, F. J., & Martínez-Hernández, J. A. (2011). Empirical patterns of the mexican industrial structure: Evidence of Zipf´s Law. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (52), 21–26. https://doi.org/10.33064/iycuaa2011524592

Issue

Section

Artículos de Investigación

Categories