Study of effects in pH, stomatal density, índole-3-acetic acid and abscisic acid on cacti cultivated in vitro and ex vitro

Authors

DOI:

https://doi.org/10.33064/iycuaa2023884089

Keywords:

cacti, Crassulacean Acid Metabolism, stomata, photosynthesis, phytohormones

Abstract

Crassulaceae acid metabolism (MAC or CAM) generally takes place in plants that live in arid areas with little water availability. These plants are characterized by being succulent, having a waxy cuticle and carrying out photosynthesis in the stems. In this work several aspects of its metabolism in cacti in vitro and ex vitro are addressed. The variation of the pH was analyzed every hour during a day and it was observed that Opuntia ficus-indica in vitro under continuous light present a C3 behavior.. The study of the stomata made it possible to relate the parallelocytic type with the Cactoideae subfamily, and the opuntoid type with the Pereskioideae and Opuntioideae subfamilies in cacti grown in vitro. Further, a stimulation in the stomatal opening was observed in O. ficus-indica and P. sacharosa with indoleacetic acid, only at high concentrations (100 and 1000 µM).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

José Francisco Morales-Domínguez, Universidad Autonoma de Aguascalientes

Departamento de Química, Centro de Ciencias Básicas

Virginia Herrera-Martínez, Universidad Autónoma de Aguascalientes

Departamento de Química, Centro de Ciencias Básicas

Eugenio Martín Pérez-Molphe Balch, Universidad Autónoma de Aguascalientes

Departamento de Química, Centro de Ciencias Básicas

Cristina Garcidueñas-Piña, Universidad Autónoma de Aguascalientes

Departamento de Química, Centro de Ciencias Básicas

References

• Assmann, S. M., & Jegla, T. (2016). Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Current Opinion in Plant Biology, 33,15-167. doi:10.1016/j.pbi.2016.07.003.

• Balen, B., Tkalec, M., Peharec Štefanić, P. et al. (2012). In vitro conditions affect photosynthetic performance and crassulacean acid metabolism in Mammillaria gracilis Pfeiff. tissues. Acta Physiol Plant, 34, 1883-1893. doi:10.1007/s11738-012-0986-y.

• Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front Plant Sci, 6(10), 225. doi:10.3389/fpls.2019.00225.

• Borland, A. M., Hartwell, J., Weston, D. J., Schlauch, K. A., Tschaplinski, T. J.,

• Tuskan, G. A., & Cushman, J. C. (2014). Engineering crassulacean acid metabolism to improve water-use efficiency. Trends in plant science, 19(5), 327-338. doi:10.1016/j.tplants.2014.01.006.

• Brookbank, B. P., Patel, J., Gazzarrini, S., & Nambara, E. (2021). Role of Basal ABA in Plant Growth and Development. Genes, 12(12), 1936. doi:10.3390/genes12121936.

• Casierra, F. & González, D. (2009). Cambio circadiano de pH y acidez titulable en la savia de fique (Furcraea castilla y F. macrophylla). Orinoquia, 13(1), 5-13.

• Chater C., Peng K., Movahedi M., Dunn J.A., Walker H.J., Liang Y.-K., McLachlan D.H., Hetherington A.M. (2015). Elevated CO2-induced responses in stomata require ABA and ABA signaling. Current Biology, 25 (20), 2709-2716. doi:10.1016/j.cub.2015.09.013.

• Eggli, U. (1984). Stomatal types of Cactaceae. Pl. Sist. Evol, 146, 197-214.

• Eisele JF, Fäßler F, Bürgel PF, Chaban C. A (2016). Rapid and simple method for microscopy-based stomata analyses. PLoS One, 11(10):e0164576. doi: 10.1371/journal.pone.0164576.

• Gilman, I. S. & Edwards, E. J. (2020). Crassulacean Acid Metabolism. Current Bilogy, 30(2), R57-R62. doi:10.1016/j.cub.2019.11.073.

• Gong, L., Liu, X.D., Zeng, Y.Y., Tian, X.Q., Li, Y.L., Turner, N.C., & Fang, X.W. (2021). Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiol, 186(1), 782-797. doi:10.1093/plphys/kiab090.

• Hernández-Hernández, T.P., Hernández, H.M., De-Nova, J.A., Puente, R., Eguiarte, L.E., & Magallón, S. (2011). Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). American journal of botany, 98(1), 44-61. doi:10.3732/ajb.1000129.

• Hernández, M., Terrazas, T. Delgado, A. & Cavazos, M. (2007). Los estomas de Myrtillocactus geometrizans: variación en su área de distribución. Rev Fitotec Mex. 30(3): 235-240.

• Herrera-Martínez, V., Rios-Hernández, L. Garcidueñas-Piña, C. Lara-Ibarra, A., Adabache-Ortíz, A., Soria-Guerra, R. Balch, E. & Morales-Domínguez, J.F. (2015). Effect of culture conditions on stomatal density and stomatal index in four cactus species. Haseltonia, 20, 43-50. doi:10.2985/026.020.0108.

• Levitt, L. K., Stein, D. B., & Rubinstein, B. (1987). Promotion of stomatal opening by indolacetic acid and ethrel in epidermal strips of Vicia faba L. Plant Physiol, 85, 318-321.

• Lígia, B.T., Caine, R. S., & Gray, J. E. (2019). Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Frontiers in Plant Science, 10, 157-167. doi:10.3389/fpls.2019.00225.

• Males, J., & Griffiths, H. (2017). Stomatal Biology of CAM Plants. Plant Physiology, 174(2), 550-560. doi:10.1104/pp.17.00114.

• Müller M., & Munné-Bosch S. (2021). Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol, 185(4), 1500-1522. doi:10.1093/plphys/kiaa119.

• Murashige, T. & Skoog, F. K. (1962). A revised medium for rapid growth and bioassays with tobacco cultures. Physiology Plantarum, 15, 473-497.

• Pérez-Molphe-Balch, E., Santos-Díaz, S., Ramírez-Malagón, R., & Ochoa-Alejo, N. (2015). Tissue culture of ornamental cacti. Scientia Agricola [online], 72 (6), 540-561. Doi:10.1590/0103-9016-2015-0012.

• Ping, C.Y., Chen, F.C., Cheng, T.C., Lin, H.L., Lin, T.S., Yang, W.J., & Lee, Y.I. (2018). Expression profiles of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes in phalaenopsis, implications for regulating the performance of crassulacean acid metabolism. Front. Plant Sci. 9:1587. doi: 10.3389/fpls.2018.01587.

• Ricanek, M. & Vicherkova, M. (1992). Stomatal responses to ABA and IAA in isolated epidermal strips of Vicia faba L. Biol. Plantarum, 34(3-4), 259-265.

• Schiller, K. & Bräutigam, A. (2021) Engineering of crassulacean acid metabolism. Annu Rev Plant Biol, 72:77-103. doi:10.1146/annurev-arplant-071720-104814.

• Sun, Y., Pri-Tal, O., Michaeli, D., Mosquna, A. (2020). Evolution of abscisic acid signaling module and its perception. Frontiers in Plant Science, 1, 934. doi:10.3389/fpls.2020.00934.

• Tay, I., Y. Y., Odang, K. B., & Cheung, C. Y. (2021). Metabolic Modeling of the C3-CAM Continuum Revealed the Establishment of a Starch/Sugar-Malate Cycle in CAM Evolution. Frontiers in Plant Science, 11, 573197. doi:10.3389/fpls.2020.573197.

• Varshney, R. K., Singh, V. K., Kumar, A., Powell, W., & Sorrells, M. E. (2018). Can genomics deliver climate-change ready crops? Curr Opin Plant Biol, 45, 205-211. doi:10.1016/J.PBI.2018.03.007.

• Velez-Ramirez, A. I., van Leperen, W., Vreugdenhil, D., Millenaar, F. F. (2011). Plants under continuous light. Trends in Plant Science, 16, (6): 310-318,.SSN 1360-1385. doi:10.1016/j.tplants.2011.02.003.

• Winter K. (2019). Ecophysiology of constitutive and facultative CAM photosynthesis. J Exp. Bot. 70(22):6495-6508. doi: 10.1093/jxb/erz002. PMID: 30810162.

• Winter, K., & Smith, J. A. C. (2022). CAM photosynthesis: the acid test. New Phytologist. 233(2), 599-609. doi:10.1111/nph.17790.

• Yang, X., et al., (2015). A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol, 207: 491-504. doi:10.1111/nph.13393.

Published

2023-01-31

Issue

Section

Artículos de Investigación

Categories