Quantification of enzymes related to resistance of insecticides in Bactericera cockerelli (Sulc) from potato-growing regions in Coahuila and Nuevo Leon, Mexico

Authors

DOI:

https://doi.org/10.33064/iycuaa2013593702

Keywords:

Resistance, potato psyllid, esterases, oxidases, glutathione s-transferase, and acetylcholinesterase

Abstract

In Mexico, Bactericera cockerelli is a main plague in solanaceous crops. In recent years, there has been an increase use of insecticides in order to reduce high densities of this plague. Irrational use of these agrochemicals has resulted in insect resistance
problems, due to increased production of insecticide detoxifying enzymes esterases (EST), oxidases (OX), glutathione s-transferase (GST) and acetylcholinesterase (ACE). The mechanisms and enzyme levels involved in tolerance to insecticides of B. cockerelli from potato-growing regions in Coahuila and Nuevo Leon remain unknown. Therefore, the enzymatic mechanisms for resistance in 20 B. cockerelli populations from potato-growing regions in Northeastern Mexico were determined. The results revealed the presence
of all enzymes, although β-esterases and oxidases were the groups with a greater presence. On the other hand, glutathione s-transferase and acetylcholinesterase showed little relevance as detoxifying mechanisms.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ernesto Cerna Chávez, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

Omegar Hernández Bautista, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

Jerónimo Landeros Flores, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

Yisa María Ochoa Fuentes, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

References

• ALMEYDA, L. I.; SÁNCHEZ, S. J.; GARZÓN, T. J., Vectores causantes de punta morada en Coahuila y Nuevo León, México. Agricultura técnica en México, 32(2): 141-150, 2008.

• BERRY, N. A.; WALKER, M. K.; BUTLER, R. C., Laboratory studies to determine the efficacy of selected insecticides on tomato/potato psyllid. New Zealand Plant Protection, 62: 145-151, 2009.

• BISSET, J. A.; RODRÍGUEZ, M. M.; MOLINA, D.; DÍAZ, C.; SOCA, L. A., Esterasas elevadas como mecanismo de resistencia a insecticidas organofosforados en cepas de Aedes aegypti. Revista Cubana de Medicina Tropical, 53(1): 37-43, 2001.

• BRADFORD, M. M., A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical. Biochemistry, 72: 248-254, 1976.

• BROGDON, W. G.; DICKINSON, M. C., A microassay system for measuring esterase activity and protein concentration in small samples and in hig-pressure liquid chromatography eluate fractions. Analytical Biochemistry, 131: 499-503, 1983.

• BROGDON, W. G., Mosquito protein microassay-1, protein determinations from small portions of singlemosquito homogenates.

Comparative Biochemistry and Physiology, 79: 457-459, 1984.

• BROGDON, W. G., Microassay of acetylcholinesterase activity in small portions of single mosquito homogenates. Comparative Biochemistry and Physiology, 90: 145-150, 1988.

• BROGDON, W. G.; BARBER, A. M., Microplate assay of acetylcholinesterase inhibition kinetics in single mosquitoes homogenates. Pesticide Biochemistry and Phisiology, 29: 252-259, 1987.

• BROGDON, W. G.; BARBER, A. M., Microplate assay of glutathione s-transferase activity for resistance detection in single mosquito triturates. Comparative Biochemistry and Physiology, 96: 339-342, 1990.

• BROGDON, W. G.; McALLISTER, J. C; VULULE, J., Hemeperoxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association, 13: 233-237, 1997.

• CARINO, F. A.; KOENER, J. F.; PLAPP, F. W.; FEYEREISEN, R., Constitutive overexpression of the cytochrome P450 gene Cyp6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochemistry and Molecular Biology, 24: 411-418, 1994.

• CLARK, J. M., SCOTT, J. G.; CAMPOS, F.; BLOOMQUIST, J. R., Resistance to avermectins: Extent, mechanisms and management implications. Annual Review Entomology, 40: 1-30, 1994.

• CYGLER, M.; SCHRAG, J. D.; SUSSMAN, J. L.; HAREL, M.; SILMAN, I.; GENTRY, M. K., Relationship between sequence conservation and three-dimensional structure in a large familiy of esterases, lipases and related proteins. Protein Science, 2: 366-382, 1993.

• DÁVILA, M.M.D.; CERNA, CH. E.; AGUIRRE, U. L. A.; GARCÍA M. O.; OCHOA F. Y M.; GALLEGOS, M. G.; LANDEROS, F. J. Susceptibilidad y mecanismos de resistencia a insecticidas en Bactericera cockerelli (sulc) en Coahuila. Revista Mexicana de Ciencias Agrícolas, 3(6): 1145-1155.

• DÍAZ C.; RODRÍGUEZ, M. M.; FRESNEDA, M.; BISSET, J. A., Determinación de la actividad glutatión-s-transferasa en cepas de Culex quinquefasciatus de Cuba y otros países de América Latina. Revista Cubana de Medicina Tropical, 56(2): 111-116, 2004.

• FERSHT, A., Measurement and magnitude of enzimatic rate constants. In: Enzyme Structure and Mechanism, 2 ed. New York. W. H.: Freeman and Company, pp. 121- 124, 1985.

• FLORES, E. A.; GRAJALES, J. S.; FERNÁNDEZ, I. S.; PONCE, G. G.; LOAIZA, M. H. B.; LOZANO, S.; BROGDON, W. G.; BLACK IV, W. C.; BEATY, B., Mechanisms of insecticide resistence in field populations of Aedes aegypti (L.) from Quintana Roo, Souther Mexico. Journal of the

American Mosquito Control Association, 22: 672-677, 2006.

• GARZÓN, T. J. A.; BÚJANOS, R.; VELARDE, F. S.; MARÍN, J. A.; PARGA, V. M.; AVILÉS, M. C.; ALMEIDA, H. I. SÁNCHEZ, A. J.; MARTÍNEZ. J. L., Bactericera vector de fitoplasmas en México, pp. 91-114. En: Flores, O. A y Lira R. H. (Eds), Detección, diagnóstico y manejo de la enfermedad

punta morada de la papa. España: Parnaso, 2004.

• HAYES, J. D.; PULFORD. D. J., The glutathione s-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology, 30: 445-600, 1995.

• JIMÉNEZ, C. R., Determinación de la tolerancia a insecticidas de diferente grupo toxicológico del psilido de la papa Bactericera cockerelli SULC

(Hemipetera:Triozidae). Tesis de Maestría Universidad Autónoma Agraria Antonio Narro. Saltillo, Coahuila, México, 2010.

• LAGUNES, T. A.; VILLANUEVA, J. A., Toxicología y manejo de insecticidas. Colegio de Postgraduados en Ciencias Agrícolas, México, 1994.

• LANDEROS, J.; AIL, C.; CERNA, E.; OCHOA, Y.; GUEVARA, L.; AGUIRRE, L., Susceptibilidad y mecanismos de resistencia de Tetranychus urticae en rosal de invernaderos. Revista Colombiana de Entomología, 36(1): 5-9, 2010.

• LIU, D.; TRUMBLE, J. T., Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomologia Experimentalis et Applicata, 123: 35-42, 2007.

• MONTELLA, I. R.; MARTINS, A. J.; FERNÁNDEZ, V.; PEREIRA, L. B.; BRAGA, I. A.; VALLE, D., Insecticide resistance mechanism of Brazilian Aedes aegyti populations from 2001-2004. The American Journal of Tropical Medical and Hygiene, 77: 467-477, 2007.

• MUNYANEZA J. E.; CROSSLIN, J. M.; UPTON, J. E. Association of Bactericera cockerelli (Hemiptera: Psyllidae) with “Zebra Chip” a new potato disease in Southwestern United States and México. Journal of Economic Entomology, 100: 656-663, 2007.

• ORTELLI, F.; ROSSITER, L. C.; VONTAS, J.; RANSON, H.; HEMINGWAY, J., Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochemical Journal, 373 (Pt 3): 957-63, 2003.

• PASTEUR, N.; RAYMONDS, M., Insecticide resistance genes in mosquitoes: their mutations, migration and selection in field populations. Journal of Heredity, 87: 444-449, 1996.

• PONCE, G. G.; BADII, M.; MERCADO, R.; FLORES, A. E., Esterases in Aedes albopictus from Northeastern Mexico. Soutwestern entomologist, 34(4): 477-484, 2009.

• RILEY, D. G.; TAN, W. J.; WOLFENBARGER, D., Activities of enzymes associated with inheritance of bifenthrin resistance in the silverleaf whitefly, Bemisia argentifolii Southwestern Entomologist, 25: 201-211, 2000.

• RUBIO, C. O.; ALMEYDA, I. H.; IRETA, J.; SÁNCHEZ, J. A.; FERNÁNDEZ, R.; BORDON, J. T.; DÍAZ, C.; GARZÓN, J. A.; ROCHA, R.; CADENA, M., Distribución de la punta morada y Bactericera cockerelli Sulc. en las principales zonas productoras de papa en México. Agricultura

Técnica en México, 32(2): 201-211, 2006.

• SECOR, G. A.; RIVERA, V. V.; ABAD, J. A.; LEE, I. M.; CLOVER, G. R.; LIEFTING, L. W.; LIU, X.; DE BOER, S. H., Association of Candidatus Liberibacter solanacearum with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and

PCR. Plant Disease, 93: 574–583, 2009.

• VEGA, G.; RODRÍGUEZ, M.; DÍAZ, G.; BUJANOS, M.; MOTA, S.; MARTÍNEZ, C.; LAGUNES. T.; GARZÓN, T., Susceptibilidad a insecticidas en dos poblaciones mexicanas del salerillo, Bactericera cockerelli (sulc) (Hemiptera: Triozidae). Agrociencia, 32(4): 463-471, 2008.

• YANG, X.; MARGOLIES, D. C.; ZHU, K. Y.; BUSCHMAN, L. L. Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology, 94: 381-387, 2001.

Published

2013-12-31

Issue

Section

Artículos de Investigación

Categories