Fractional Newton cooling law

Authors

DOI:

https://doi.org/10.33064/iycuaa2014613650

Keywords:

fractional calculus, Newton cooling law, Mittag-Leffler functions, fractional differential equations, Caputo derivative, anomalous diffusion

Abstract

In this contribution we propose a new fractional differential equation to describe the Newton cooling law. The order of the derivatives is 0<γ ≤1. In order to be consistent with the physical equation, a new parameter σ is introduced. This parameter
characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative γ and the new parameter σ is found. Due to this relation, the solutions of the corresponding fractional differential equations are given in terms of the Mittag-Leffler function depending only on the parameter γ. The classical cases are recovered by taking the limit when γ =1.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

José Francisco Gómez Aguilar, Universidad Nacional Autónoma de México

Departamento de Materiales Solares, Instituto de Energías Renovables

José Roberto Razo Hernández, Instituto Tecnológico Superior de Irapuato

Departamento de Electromecánica

References

• AGRAWAL, O. P., TENREIRO MACHADO, J. A., y SABATIER, I. (eds.). Fractional Derivatives and Their Applications. Nonlinear Dynamics, 38. Berlin: Springer-Verlag, 2004.

• BALEANU, D., GÜNVENC, Z. B., y TENREIRO MACHADO, J. A. (eds.). New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010.

• CAPUTO, M. y MAINARDI, F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics, 91(8): 134-147, 1971.

• DORREGO, G. A. y CERUTTI, R. A. The k-Mittag-Leffler function. International Journal of Contemporary Mathematical Sciences, 7(13-16): 705-716, 2012.

• GÓMEZ AGUILAR, J. F., J ROSALES GARCÍA, J., BERNAL ALVARADO, J. J., CÓRDOVA FRAGA, T. y GUZMÁN CABRERA, R. Fractional mechanical oscillators. Revista Mexicana de Física, 58: 348-352, 2012.

• GÓMEZ AGUILAR, F., ROSALES GARCÍA, J., GUÍA CALDERÓN, M., y BERNAL ALVARADO, J. Analysis of Equivalent Circuits for Cells: A Fractional Calculus Approach. Ingeniería, Investigación y Tecnología, UNAM, XIII(3): 375-384, 2012.

• GÓMEZ, F., BERNAL, J., ROSALES, J., y CÓRDOVA, T. Modeling and Simulation of Equivalent Circuits in Description of Biological Systems-A Fractional Calculus Approach. Journal of Electrical Bioimpedance, 3: 2-11, 2012.

• GONZÁLEZ GAXIOLA, O. y SANTIAGO, J. A. An alpha-Mellin transform and some of its applications. International Journal of Contemporary Mathematical Sciences, 7(45-48): 2353-2361, 2012.

• GUÍA, M., GÓMEZ, F., y ROSALES, J. Analysis on the Time and Frequency Domain for the RC Electric Circuit of Fractional Order. Central European Journal of Physics, 11(10): 1366-1371, Springer, 2013.

• HILFER, R. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000.

• MAGIN, R. L. y OVADIA, M. Modeling the cardiac tissue electrode interface using fractional calculus. Journal of Vibration and Control, 14(9-10): 1431-1442, 2008.

• METZLER R. y KLAFTER, J. The Random Walk’s Guide To Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 339(2000): 1-77, 2000.

• MONWHEA, J. The Mpemba effect: When can hot water freeze faster than cold? American Journal of Physics, 74(6): 514-522, 2006.

• OBEIDAT, A., GHARIBEH, M., AL-ALI, M., y ROUSAN, A. Evolution of a Current in a Resistor. Fractional Calculus and Applied Analysis, 14(2): 247-259, Springer, 2011.

• PETRAS, I. Fractional-Order Memristor-Based Chua’s Circuit. IEEE Transactions on Circuits and Systems-II: Express Briefs, 57(12): 975-979, 2010.

• PODLUBNY, I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5(4): 367-386, 2002.

• PODLUBNY, I. The Laplace transform method for linear differential equations of the fractional order. Technical Report. Kosice, Slovakia: Slovak Academy of Sciences, Institute of Experimental Physics, 1994.

• ROSALES, J. J., GUÍA, M., GÓMEZ, J. F. y TKACH, V. I. Fractional Electromagnetic Wave. Discontinuity, Nonlinearity and Complexity, 1(4): 325-335, 2012.

• TENREIRO MACHADO, J. A. A probabilistic interpretation of the fractional-order differentiation. Fractional Calculus and Applied Analysis, 6(1): 73-80, 2003.

• VELIEV, E. I. y ENGHETA, N. Fractional Curl Operator in Reflection Problems. 10th International Conference on Mathematical Methods in Electromagnetic Theory, Ukraine, Sept. 14-17, 2004.

• WEST, B. J., BOLOGNA, M., y GRIGOLINI, P. Physics of Fractional Operators. Berlin: Springer-Verlag, 2003.

• WYSS, W. The Fractional Diffusion Equations. Journal of Mathematical Physics, 27(11): 2782-2785, 1986.

De páginas electrónicas

• GUTIÉRREZ, R. E., ROSÁRIO, J. M., y TENREIRO MACHADO, J. T. Fractional Order Calculus: Basic Concepts and Engineering Aplications. Mathematical Problems in Engineering, 2010 Article ID. 375858, 19 pages. Hindawi Publishing Corporation. doi: 10.1155/2010/375858.

• KRISHNA, B. T. y REDDY, K. V. V. S. Active and Passive Realization of Fractance Device of Order ½. Active and Passive Electronic Components, 2008(2008), Article ID 369421, 5 pages. De: http//dx.doi.org/10.1155/2008/369421

Published

2014-04-30

Issue

Section

Artículos de Investigación

Categories