Fractional Newton cooling law
DOI:
https://doi.org/10.33064/iycuaa2014613650Keywords:
fractional calculus, Newton cooling law, Mittag-Leffler functions, fractional differential equations, Caputo derivative, anomalous diffusionAbstract
In this contribution we propose a new fractional differential equation to describe the Newton cooling law. The order of the derivatives is 0<γ ≤1. In order to be consistent with the physical equation, a new parameter σ is introduced. This parameter
characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative γ and the new parameter σ is found. Due to this relation, the solutions of the corresponding fractional differential equations are given in terms of the Mittag-Leffler function depending only on the parameter γ. The classical cases are recovered by taking the limit when γ =1.
Downloads
Metrics
References
• AGRAWAL, O. P., TENREIRO MACHADO, J. A., y SABATIER, I. (eds.). Fractional Derivatives and Their Applications. Nonlinear Dynamics, 38. Berlin: Springer-Verlag, 2004.
• BALEANU, D., GÜNVENC, Z. B., y TENREIRO MACHADO, J. A. (eds.). New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010.
• CAPUTO, M. y MAINARDI, F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics, 91(8): 134-147, 1971.
• DORREGO, G. A. y CERUTTI, R. A. The k-Mittag-Leffler function. International Journal of Contemporary Mathematical Sciences, 7(13-16): 705-716, 2012.
• GÓMEZ AGUILAR, J. F., J ROSALES GARCÍA, J., BERNAL ALVARADO, J. J., CÓRDOVA FRAGA, T. y GUZMÁN CABRERA, R. Fractional mechanical oscillators. Revista Mexicana de Física, 58: 348-352, 2012.
• GÓMEZ AGUILAR, F., ROSALES GARCÍA, J., GUÍA CALDERÓN, M., y BERNAL ALVARADO, J. Analysis of Equivalent Circuits for Cells: A Fractional Calculus Approach. Ingeniería, Investigación y Tecnología, UNAM, XIII(3): 375-384, 2012.
• GÓMEZ, F., BERNAL, J., ROSALES, J., y CÓRDOVA, T. Modeling and Simulation of Equivalent Circuits in Description of Biological Systems-A Fractional Calculus Approach. Journal of Electrical Bioimpedance, 3: 2-11, 2012.
• GONZÁLEZ GAXIOLA, O. y SANTIAGO, J. A. An alpha-Mellin transform and some of its applications. International Journal of Contemporary Mathematical Sciences, 7(45-48): 2353-2361, 2012.
• GUÍA, M., GÓMEZ, F., y ROSALES, J. Analysis on the Time and Frequency Domain for the RC Electric Circuit of Fractional Order. Central European Journal of Physics, 11(10): 1366-1371, Springer, 2013.
• HILFER, R. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000.
• MAGIN, R. L. y OVADIA, M. Modeling the cardiac tissue electrode interface using fractional calculus. Journal of Vibration and Control, 14(9-10): 1431-1442, 2008.
• METZLER R. y KLAFTER, J. The Random Walk’s Guide To Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 339(2000): 1-77, 2000.
• MONWHEA, J. The Mpemba effect: When can hot water freeze faster than cold? American Journal of Physics, 74(6): 514-522, 2006.
• OBEIDAT, A., GHARIBEH, M., AL-ALI, M., y ROUSAN, A. Evolution of a Current in a Resistor. Fractional Calculus and Applied Analysis, 14(2): 247-259, Springer, 2011.
• PETRAS, I. Fractional-Order Memristor-Based Chua’s Circuit. IEEE Transactions on Circuits and Systems-II: Express Briefs, 57(12): 975-979, 2010.
• PODLUBNY, I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5(4): 367-386, 2002.
• PODLUBNY, I. The Laplace transform method for linear differential equations of the fractional order. Technical Report. Kosice, Slovakia: Slovak Academy of Sciences, Institute of Experimental Physics, 1994.
• ROSALES, J. J., GUÍA, M., GÓMEZ, J. F. y TKACH, V. I. Fractional Electromagnetic Wave. Discontinuity, Nonlinearity and Complexity, 1(4): 325-335, 2012.
• TENREIRO MACHADO, J. A. A probabilistic interpretation of the fractional-order differentiation. Fractional Calculus and Applied Analysis, 6(1): 73-80, 2003.
• VELIEV, E. I. y ENGHETA, N. Fractional Curl Operator in Reflection Problems. 10th International Conference on Mathematical Methods in Electromagnetic Theory, Ukraine, Sept. 14-17, 2004.
• WEST, B. J., BOLOGNA, M., y GRIGOLINI, P. Physics of Fractional Operators. Berlin: Springer-Verlag, 2003.
• WYSS, W. The Fractional Diffusion Equations. Journal of Mathematical Physics, 27(11): 2782-2785, 1986.
De páginas electrónicas
• GUTIÉRREZ, R. E., ROSÁRIO, J. M., y TENREIRO MACHADO, J. T. Fractional Order Calculus: Basic Concepts and Engineering Aplications. Mathematical Problems in Engineering, 2010 Article ID. 375858, 19 pages. Hindawi Publishing Corporation. doi: 10.1155/2010/375858.
• KRISHNA, B. T. y REDDY, K. V. V. S. Active and Passive Realization of Fractance Device of Order ½. Active and Passive Electronic Components, 2008(2008), Article ID 369421, 5 pages. De: http//dx.doi.org/10.1155/2008/369421
Downloads
Published
License
Copyright (c) 2014 José Francisco Gómez Aguilar, José Roberto Razo Hernández
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)