Bacterial Integron. Structure, antibiotic resistance, and beneficial applications

Authors

DOI:

https://doi.org/10.33064/iycuaa2022873631

Keywords:

integron, cassette, bacterial pathogens, antibiotic resistance, therapy, biotechnological application

Abstract

Integrons are modular genetic systems that allow bacteria to adapt to different environments. The objective of this review is to understand the structure of integrones, their participation in bacterial evolution and their role in the spread of resistance and virulence. Likewise we address how it is being used the flexible and recombinant nature at the biotechnological level, for promising applications in bioremediation, industry, agriculture and design of novel therapies to overcome the problem of antibiotic resistance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Margarita María de la Paz Arenas-Hernández, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biomedicina, Eje de Microbiología. Facultad de Medicina

Aranzazú Del Pilar Romano-Valerio, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biomedicina, Eje de Microbiología. Facultad de Medicina

Carolina Acevedo-Ocampo, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biomedicina, Eje de Microbiología. Facultad de Medicina

References

Akrami, F., Rajabnia, M., & Pournajaf, A. (2019). Resistance integrons; A Mini review. Caspian Journal of Internal Medicine, 10(4), 370–376. https://doi.org/10.22088/cjim.10.4.370

• Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2013). An antibiotic-resistant class 3 integron in an enterobacter cloacae isolate from hospital effluent. Clinical Microbiology and Infection, 19(7), E306–E308. https://doi.org/10.1111/1469-0691.12186

• Cambray, G., Guerout, A. M., & Mazel, D. (2010). Integrons. Annual Review of Genetics, 44, 141–166. https://doi.org/10.1146/annurev-genet-102209-163504

• Cao, X., Xu, X., Zhang, Z., Shen, H., Chen, J., & Zhang, K. (2014). Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1–5. https://doi.org/10.1186/1476-0711-13-16

• Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials, 14(1), 1–11. https://doi.org/10.1186/s12941-015-0100-6

• Di Conza, J. A. & Gutkind, G. O. (2010). Integrones: los coleccionistas de genes. Argent. Microbiol., 42, 63–78. http://www.scielo.org.ar/scielo.php?script=sci_isoref&pid=S0325-75412010000100014&lng=es&tlng=es

• Domingues, S., da Silva, G. J., & Nielsen, K. M. (2012). Integrons. Mobile Genetic Elements, 2(5), 211–223. https://doi.org/10.4161/mge.22967

• Domingues, S., Da Silva, G. J., & Nielsen, K. M. (2015). Global dissemination patterns of common gene cassette arrays in class 1 integrons. Microbiology (United Kingdom), 161(7), 1313–1337. https://doi.org/10.1099/mic.0.000099

• Elsaied, H., Stokes, H. W., Kitamura, K., Kurusu, Y., Kamagata, Y., & Maruyama, A. (2011). Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays. ISME Journal, 5(7), 1162–1177. https://doi.org/10.1038/ismej.2010.208

• Fonseca, É. L., & Vicente, A. C. (2022). Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms, 10(2). https://doi.org/10.3390/microorganisms10020224

• Gestal, A. M., Liew, E. F., & Coleman, N. V. (2011). Natural transformation with synthetic gene cassettes: New tools for integron research and biotechnology. Microbiology, 157(12), 3349–3360. https://doi.org/10.1099/mic.0.051623-0

• Ghaly, T. M., Geoghegan, J. L., Tetu, S. G., & Gillings, M. R. (2020). The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends in Microbiology, 28(6), 455–464. https://doi.org/https://doi.org/10.1016/j.tim.2019.12.002

• Gillings, M. R. (2014). Integrons: Past, Present, and Future. Microbiology and Molecular Biology Reviews, 78(2), 257–277. https://doi.org/10.1128/mmbr.00056-13

• González R, G., Mella M, S., Zemelman Z, R., Bello T, H., & Domínguez Y, M. (2004). Integrones y cassettes genéticos de resistencia: Estructura y rol frente a los antibacterianos. Revista Medica de Chile, 132(5), 619–626. https://doi.org/10.4067/s0034-98872004000500013

• Guney, A. K. (2014). A Study on Class I Integrons and Antimicrobial Resistance among Clinical Staphylococci Isolates from a Turkish Hospital. Clinical Microbiology: Open Access, 03(06). https://doi.org/10.4172/2327-5073.1000173

• Hall, R. M., & Collis, C. M. (1995). Mobile gene cassettes and integrons: capture and spread of genes by site‐specific recombination. Molecular Microbiology, 15(4), 593–600. https://doi.org/10.1111/j.1365-2958.1995.tb02368.x

• Hall, R. M., & Collis, C. M. (1998). Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resistance Updates, 1(2), 109–119. https://doi.org/10.1016/S1368-7646(98)80026-5

• Kan, A., & Joshi, N. S. (2019). Towards the directed evolution of protein materials. MRS Communications, 9(2), 441–455. https://doi.org/10.1557/mrc.2019.28

• Kaushik, M., Kumar, S., Kapoor, R. K., Virdi, J. S., & Gulati, P. (2018). Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 51(2), 167–176. https://doi.org/10.1016/j.ijantimicag.2017.10.004

• Koenig, J. E., Boucher, Y., Charlebois, R. L., Nesbø, C., Zhaxybayeva, O., Bapteste, E., Spencer, M., Joss, M. J., Stokes, H. W., & Doolittle, W. F. (2008). Integron-associated gene cassettes in Halifax Harbour: Assessment of a mobile gene pool in marine sediments. Environmental Microbiology, 10(4), 1024–1038. https://doi.org/10.1111/j.1462-2920.2007.01524.x

• Koenig, Jeremy E., Bourne, D. G., Curtis, B., Dlutek, M., Stokes, H. W., Doolittle, W. F., & Boucher, Y. (2011). Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: Genomic hotspots for environmental adaptation. ISME Journal, 5(6), 962–972. https://doi.org/10.1038/ismej.2010.193

• Koenig, Jeremy E., Sharp, C., Dlutek, M., Curtis, B., Joss, M., Boucher, Y., & Doolittle, W. F. (2009). Integron gene cassettes and degradation of compounds associated with industrial waste: The case of the SydneyTar Ponds. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005276

• Kumar, A. (2020). Jump around: Transposons in and out of the laboratory. F1000Research, 9, 1–12. https://doi.org/10.12688/f1000research.21018.1

• Mazel, D. (2006). Integrons: Agents of bacterial evolution. Nature Reviews Microbiology, 4(8), 608–620. https://doi.org/10.1038/nrmicro1462

• Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4), 1–61. https://doi.org/10.1128/CMR.00088-17

• Rubin, J., Mussio, K., Xu, Y., Suh, J., & Riley, L. W. (2020). Prevalence of Antimicrobial Resistance Genes and Integrons in Commensal Gram-Negative Bacteria in a College Community. Microbial Drug Resistance, 26(10), 1227–1235. https://doi.org/10.1089/mdr.2019.0279

• Sabaté, M., & Prats, G. (2002). Estructura y función de los integrones. Enfermedades Infecciosas y Microbiología Clínica, 20(7), 341–345. https://doi.org/10.1016/s0213-005x(02)72813-9

• Sabbagh, P., Rajabnia, M., Maali, A., & Ferdosi-Shahandashti, E. (2021). Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iranian Journal of Basic Medical Sciences, 24(2), 136–142. https://doi.org/10.22038/ijbms.2020.48905.11208

• Shi, L., Zheng, M., Xiao, Z., Asakura, M., Su, J., Li, L., & Yamasaki, S. (2006). Unnoticed spread of class 1 integrons in gram-positive clinical strains isolated in Guangzhou, China. Microbiology and Immunology, 50(6), 463–467. https://doi.org/10.1111/j.1348-0421.2006.tb03815.x

• Simo Tchuinte, P. L., Stalder, T., Venditti, S., Ngandjio, A., Dagot, C., Ploy, M. C., & Barraud, O. (2016). Characterisation of class 3 integrons with oxacillinase gene cassettes in hospital sewage and sludge samples from France and Luxembourg. International Journal of Antimicrobial Agents, 48(4), 431–434. https://doi.org/10.1016/j.ijantimicag.2016.06.018

• Stokes, H. W., Holmes, A. J., Nield, B. S., Holley, M. P., Nevalainen, K. M. H., Mabbutt, B. C., & Gillings, M. R. (2001). Gene Cassette PCR: Sequence-Independent Recovery of Entire Genes from Environmental DNA. Applied and Environmental Microbiology, 67(3–12), 5240–5246. https://doi.org/10.1128/aem.67.11.5240-5246.2001

• Uchiyama, T. and Miyazaki, K. (2009). Functional metagenomics for enzyme discovery:challenges to efficient screening. Current Opinion in Biotechnology, 20, 616–622.

• Yamaji, R., Friedman, C. R., Rubin, J., Suh, J., Thys, E., McDermott, P., Hung-Fan, M., & Riley, L. W. (2018). A Population-Based Surveillance Study of Shared Genotypes of Escherichia coli Isolates from Retail Meat and Suspected Cases of Urinary Tract Infections. MSphere, 3(4). https://doi.org/10.1128/mSphere.00179-18

Published

2022-12-31

Issue

Section

Revisiones Científicas

Categories