Allergic asthma: immunological mechanisms, pathophysiology and current treatments

Authors

  • Nuria Renata Roldán Bretón Universidad Autónoma de Aguascalientes
  • Mariela Jiménez Vargas Universidad Autónoma de Aguascalientes
  • Eva Salinas Miralles Universidad Autónoma de Aguascalientes

DOI:

https://doi.org/10.33064/iycuaa2015653584

Keywords:

asthma prevalence, asthma phenotypes, allergic asthma, TH2-cytokines, airway remodeling, treatments

Abstract

Asthma is a chronic inflammatory lung disease that affects more than 300 million persons all over the world, resulting in approximately 250,000 annual deaths. Allergic asthma is the most common clinical phenotype of the disease. Its etiology involves
multiple genetic and environmental factors. Many inflammatory cells, including mast cells, eosinophils, neutrophils, T lymphocytes and epithelial cells, play crucial roles in its development. Inflammatory mediators released by these cells cause sustained chronic inflammation, triggering bronchoconstriction and structural changes in the airways. Understanding the exact immunological mechanisms involved in the development of allergic asthma is crucial to generate new treatments. The aim of this work is to
review the most recent information on molecular and cellular elements associated with allergic asthma, its pathophysiology and current treatments.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nuria Renata Roldán Bretón, Universidad Autónoma de Aguascalientes

Departamento de Microbiología, Centro de Ciencias Básicas

Mariela Jiménez Vargas, Universidad Autónoma de Aguascalientes

Departamento de Microbiología, Centro de Ciencias Básicas

Eva Salinas Miralles, Universidad Autónoma de Aguascalientes

Departamento de Microbiología, Centro de Ciencias Básicas

References

• GALLI, S. J. y TSAI, M. IgE and mast cells in allergic disease. Nature Medicine, 18(5): 693-704, 2012.

• GRAINGE, C. L. et al. Effect of bronchoconstriction on airway remodeling in asthma. The New England Journal of Medicine, 2011(364): 2006-2015, 2011.

• GREENING, A. P. et al. Added salmeterol versus higher-dose corticosteroid in asthma patients with symptoms on existing inhaled corticosteroid. Lancet, 344(8917): 219-224, 1994.

• HARAGUCHI, M. et al. Morphometric analysis of bronchial cartilage in chronic obstructive pulmonary disease and bronchial asthma. American Journal of Respiratory and Critical Care Medicine, 159(3): 1005-1013, 1999.

• ISHMAEL, F. T. The inflammatory response in the pathogenesis of asthma. The Journal of the American Osteopathic Association, 111(11): 11-17, 2011.

• KARJALAINEN, E. M. et al. Airway inflammation and basement membrane tenascin in newly diagnosed atopic and nonatopic asthma. Respiratory Medicine, 97(9): 1045-1051, 2003.

• KIM, H. Y. et al. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nature Immunology, 11, 577-584, 2010.

• KLEIN WOLTERINK, R. G. J. et al. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. European Journal of Immunology, 42(5): 1106-1116, 2012.

• KUDO, M. et al. Pathology of asthma. Frontiers in Microbiology, 2013(4): 1-16, 2013.

• LAMBRECHT, B. N. y HAMMAD, H. Asthma: the importance of dysregulated barrier immunity. European Journal of Immunology, 43(12): 3125-3137, 2013.

• LARCHÉ, M. Update on the current status of peptide immunotherapy. Journal of Allergy and Clinical Immunology, 119(4): 906-909, 2007.

• LEGG, J. P. et al. Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. American Journal of Respiratory and Critical Care Medicine, 168(6): 633-639, 2003.

• MIRANDA, C. et al. Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. Journal of Allergy and Clinical Immunology, 113(1): 101-108, 2004.

• NAVE, R. Clinical pharmacokinetic and pharmacodynamic profile of inhaled ciclesonide. Clinical Pharmacokinetics, 48(4): 243-252, 2009.

• NOBLE, P. B. et al. Relationship of airway narrowing, compliance, and cartilage in isolated bronchial segments. Journal of Applied Physiology, 92(3): 1119-1124, 2002.

• ORDOÑEZ, C. et al. Epithelial desquamation in asthma: artifact or pathology? American Journal Respiratory and Critical Care Medicine, 162(6): 2324-2329, 2000.

• PALMQVIST, M. et al. Inhaled dry-powder formoterol and salmeterol in asthmatic patients: onset of action, duration of effect and potency. European Respiratory Journal, 10(11): 2484-2489, 1997.

• PENNINO, D. et al. IL-22 suppresses IFN-γ–mediated lung inflammation in asthmatic patients. Journal of Allergy Clinical and Immunology, 131(2): 562-570, 2013.

• POLOSA, R. Critical appraisal of antileukotriene use in asthma management. Current Opinion in Pulmonary Medicine, 13(1): 24-30, 2007.

• RISMA, K. A. et al. V75R576 IL-4 Receptor α is associated with allergic asthma and enhanced IL-4 receptor function. The Journal of Immunology, 169(3): 1604-1610, 2002.

• ROCHE, W. et al. Subepithelial fibrosis in the bronchi of asthmatics. The Lancet, 333(8637): 520-524, 1989.

• SCHÄCKE, H. et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proceedings of the National Academy of Science of USA, 101(1): 227-232, 2004.

• SHARMA, S. et al. A novel (TG)n(GA)m repeat polymorphism 254 bp downstream of the mast cell chymase (CMA1) gene is associated with atopic asthma and total serum IgE levels. Journal of Human Genetics, 50(2005): 276-282, 2005.

• SOLER, M. et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. European Respiratory Journal, 18(2): 254-261, 2001.

• TAKHAR, P. et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. Journal of Allergy and Clinical Immunology, 119(1): 213-218, 2007.

• TANAKA, H. et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. American Journal of Respiratory and Critical Care Medicine, 168(12): 1495-1499, 2003.

• THOMSEN, S. F. et al. Estimates of asthma heritability in a large twin simple. Clinical and Experimental Allergy, 40(7): 1054-1061, 2010.

• WENZEL, S. E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nature Medicine, 18(5): 716-725, 2012.

• YUKSELEN, A. y KENDIRLI, S. G. Role of immunotherapy in the treatment of allergic asthma. World Journal of Clinical Cases, 2(12): 859-865, 2014.

De páginas electrónicas

• GINA (GLOBAL INICIATIVE FOR ASTHMA). Recuperado el 5 de mayo de 2014, de http://www.ginasthma.org/

• INER (INSTITUTO NACIONAL DE ENFERMEDADES RESPIRATORIAS). Recuperado el 2 de abril de 2014, de http://www.iner.salud.gob.mx/

• OMS (ORGANIZACIÓN MUNDIAL DE LA SALUD). Recuperado el 1 de mayo de 2014, de http://www.who.int/es/

• SSA (SECRETARÍA DE SALUD) DIRECCIÓN GENERAL DE EPIDEMIOLOGÍA. Recuperado el 9 de junio de 2014, de http://www.epidemiologia.salud.gob.mx/

Published

2015-08-31

How to Cite

Roldán Bretón, N. R., Jiménez Vargas, M., & Salinas Miralles, E. (2015). Allergic asthma: immunological mechanisms, pathophysiology and current treatments. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (65), 66–72. https://doi.org/10.33064/iycuaa2015653584

Issue

Section

Revisiones Científicas

Categories