Preliminary investigation on the numerical properties of a discretization of the hyperbolic Burgers-Fisher equation

Authors

  • Jorge Eduardo Macías Díaz Universidad Autónoma de Aguascalientes
  • Jonathan Batres Romo Universidad Autónoma de Aguascalientes

DOI:

https://doi.org/10.33064/iycuaa2015653578

Keywords:

hyperbolic Burgers-Fisher’s equation, traveling-wave solutions, nonlinear discretization, finite-difference method, positivity, boundedness, monotone technique

Abstract

In this work, we provide a nonlinear, finite-difference scheme to approximate the solutions of a hyperbolic generalization of the Burgers-Fisher equation from population dynamics. The model under study is a partial differential equation with nonlinear
advection, reaction and damping terms, for which the existence of some traveling-wave solutions has been established in the literature. In the present manuscript, we investigate the capability of our technique to preserve some of the most important
features of those solutions, namely, the positivity, the boundedness and the monotonicity. The finitedifference approach followed in this work employs the exact solutions to prescribe the initial-boundary data. In addition to providing good approximations
to the analytical solutions, our simulations suggest that the method is also capable of preserving the mathematical features of interest.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Jorge Eduardo Macías Díaz, Universidad Autónoma de Aguascalientes

Departamento de Matemáticas y Física, Centro de Ciencias Básicas

Jonathan Batres Romo, Universidad Autónoma de Aguascalientes

Maestría en Ciencias con Opciones a la Computación, Matemáticas Aplicadas, Centro de Ciencias Básicas

References

• MACÍAS DÍAZ, J. E. Sufficient conditions for the preservation of the boundedness in a numerical method for a physical model with transport memory and nonlinear damping. Computer Physics Communications, 182(12): 2471-2478, 2011.

• MACÍAS DÍAZ, J. E. y VILLA, J. Simple numerical method to study traveling-wave solutions of a diffusive problem with nonlinear advection and reaction. Numerical Methods for Partial Differential Equations, 29(5): 1694-1708, 2013.

• MANSOUR, M. B. A. Traveling wave solutions for the extended Fisher/KPP equation. Reports on Mathematical Physics, 66(3): 375-383, 2010.

• MICKENS, R. E. Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. Journal of Difference Equations and Applications, 11(7): 645-653, 2005.

• MICKENS, R. E. y JORDAN, P. M. A new positivity-preserving nonstandard finite difference scheme for the DWE. Numerical Methods for Partial Differential Equations, 21(5): 976-985, 2005.

• MICKENS, R. E. y JORDAN, P. M. A positivity-preserving nonstandard finite difference scheme for the dampes wave equation. Numerical Methods for Partial Differential Equations, 20(5): 639-649, 2004.

• WANG, X. L. et al. Solitary wave solutions of the generalized Burgers-Huxley equation. Journal of Physics A: Mathematical and General, 23(3): 271, 1990.

• WANG, X. Y. Exact and explicit solitary wave solutions for the generalized Fisher equation. Physics Letters A, 131(4-5): 277-279, 1988

Published

2015-08-31

How to Cite

Macías Díaz, J. E., & Batres Romo, J. (2015). Preliminary investigation on the numerical properties of a discretization of the hyperbolic Burgers-Fisher equation. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (65), 20–25. https://doi.org/10.33064/iycuaa2015653578

Issue

Section

Artículos de Investigación

Categories