Aflatoxins in the agricultural sector and the potential of plant-derived adsorbents
DOI:
https://doi.org/10.33064/iycuaa2021842912Keywords:
Mycotoxins, aflatoxin B1, biosorbents, adsorption, feed safety, feedAbstract
Several species of filamentous fungi have the ability to synthesize highly toxic secondary metabolites named mycotoxins. Within this group there are aflatoxins, which are ubiquitous in food and extremely toxic to both humans and animals. For this reason, decontamination strategies based on physical, chemical, and biological procedures have been investigated and developed. Generally, physical strategies are highly effective, mainly with the use of adsorbent materials. Adsorbents are compounds with the ability to bind mycotoxins, thus limiting their absorption in the gastrointestinal tract of animals. However, one of the disadvantages of inorganic adsorbents is the sorption of micronutrients from the diet and/or the release of toxic components. Consequently, this review provides an overview of the aflatoxins and their effects on animals, as well the effectiveness of certain plant-derived materials for their adsorption. Finally, conclusions and future research needs are presented.
Downloads
Metrics
References
• Aoudia, N., Callu, P., Grosjean, F., & Larondelle, Y. (2009). Effectiveness of mycotoxin sequestration activity of micronized wheat fibres on distribution of ochratoxin A in plasma, liver and kidney of piglets fed a naturally contaminated diet. Food and Chemical Toxicology, 47(7), 1485-1489. doi: 10.1016/j.fct.2009.03.033
• Avantaggiato, G., Greco, D., Damascelli, A., Solfrizzo, M., & Visconti, A. (2014). Assessment of multi-mycotoxin adsorption efficacy of grape pomace. Journal of Agricultural and Food Chemistry, 62(2), 497-507. doi: https://doi.org/10.1021/jf404179h
• Bhat, R., Rai, R. V., & Karim, A. A. (2010). Mycotoxins in food and feed: Present status and future concerns. Comprehensive Reviews in Food Science and Food Safety, 9(1), 57-81. doi: 10.1111/j.1541-4337.2009.00094.x
• Bočarov Stančić, A. S., Lopičić, Z. R., Bodroža Solarov, M. I., Stanković, S. Ž., Janković, S. M., Milojković, J. V., & Krulj, J. A. (2018). In vitro removing of mycotoxins by using different inorganic adsorbents and organic waste materials from Serbia. Food and Feed Research, 45(2), 87-96. doi: 10.5937/FFR1802087B
• Boudergue, C., Burel, C., Dragacci, S., Favrot, M.-C., Fremy, J.-M., Massimi, C., … Avantaggiato, G. (2009). Review of mycotoxin‐detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Journal, 6(9), 22E. doi: 10.2903/sp.efsa.2009.EN-22
• Bueno, D. J., Salvano, M., Silva, J. O., González, S. N., & Oliver, G. (2001). Micotoxinas: Diagnóstico y prevención en aves de corral. Boletín Micológico, 16, 23-36. doi: 10.22370/bolmicol.2001.16.0.457
• Campagnollo, F. B., Ganev, K. C., Khaneghah, A. M., Portela, J. B., Cruz, A. G., Granato, D., … Sant'Ana, A. S. (2016). The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food Control, 68(C), 310-329. doi: 10.1016/j.foodcont.2016.04.007
• Carvajal, M. (2013). Transformación de la aflatoxina B1 de alimentos, en el cancerígeno humano, aducto AFB1-ADN. TIP Revista Especializada en Ciencias Químico-Biológicas, 16(2), 109-120. doi: 10.1016/S1405-888X(13)72082-5
• Denli, M., & Pérez, J. F. (2006). Contaminación por micotoxinas en los piensos: efectos, tratamiento y prevención. XXII Curso de Especialización. FEDNA, 1-18.
• Di Gregorio, M. C., de Neeff, D. V., Jager, A. V., Corassin, C. H., de Pinho Carão, Á. C., Albuquerque, R., … Fernandes Oliveira, C. A. (2014). Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Reviews, 33(3), 125-135. doi: 10.3109/15569543.2014.905604
• Diaz, D. E. (2008). A review on the use of mycotoxin sequestering agents in agricultural livestock production. Food Contaminants, 1001. 125-150. doi: 10.1021/bk-2008-1001.ch007
• Fernandes, M. M., & Baeyens, B. (2019). Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects. Applied Geochemistry, 100, 190-202. doi: https://doi.org/10.1016/j.apgeochem.2018.11.005
• Gómez Verduzco, G., Cortés Cuevas, A., López Coello, C., Arce Menocal, J., Vásquez Pelaez, C., & Ávila González, E. (2009). Comportamiento productivo y respuesta inmune de pollos alimentados con dietas sorgo-soya con y sin aflatoxina y paredes celulares de levadura (Saccharomyces cerevisiae). Técnica Pecuaria en México, 47(3), 285-297. Recuperado de https://www.redalyc.org/articulo.oa?id=61312111005
• Greco, D., D'Ascanio, V., Santovito, E., Logrieco, A. F., & Avantaggiato, G. (2019). Comparative efficacy of agricultural by‐products in sequestering mycotoxins. Journal of the Science of Food and Agriculture, 99(4), 1623-1634. doi: https://doi.org/10.1002/jsfa.9343
• Hernández-Ramírez, J. O., Nava-Ramírez, M. J., Merino-Guzmán, R., Téllez-Isaías, G., Vázquez-Durán, A., & Méndez-Albores, A. (2020). The effect of moderate-dose aflatoxin B1 and Salmonella Enteritidis infection on intestinal permeability in broiler chickens. Mycotoxin research, 36(1), 31-39. doi: https://doi.org/10.1007/s12550-019-00367-7
• Huwig, A., Freimund, S., Käppeli, O., & Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122(2), 179-188. doi: 10.1016/s0378-4274(01)00360-5
• International Agency for Research in Cancer. (IARC). (1995). IARC Activities in mycotoxin research. Natural Toxins, 3 (4), 327-331.
• Jard, G., Liboz, T., Mathieu, F., Guyonvarc’h, A., & Lebrihi, A. (2011). Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 28(11), 1590-1609. doi: 10.1080/19440049.2011.595377
• Kolosova, A., & Stroka, J. (2011). Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin Journal, 4(3), 225-256. doi: 10.3920/WMJ2011.1288
• Magnoli, A. P., Monge, M. P., Miazzo, R. D., Cavaglieri, L. R., Magnoli, C. E., Merkis, C. I., … Chiacchiera, S. M. (2011). Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poultry Science, 90(1), 48-58. doi: 10.3382/ps.2010-00971
• Marin, S., Ramos, A. J., Cano-Sancho, G., & Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218-237. doi: 10.1016/j.fct.2013.07.047
• Méndez-Albores, A., Escobedo-González, R., Aceves-Hernández, J. M., García-Casillas, P., Nicolás-Vázquez, M. I., & Miranda-Ruvalcaba, R. (2020). A theoretical study of the adsorption process of B-aflatoxins using Pyracantha koidzumii (Hayata) Rehder biomasses. Toxins, 12(5), 283.
• Méndez-Albores, & Martínez-Moreno (2009). Las Micotoxinas contaminantes naturales de los alimentos. Revista Ciencia, 7(1). Recuperado de https://docplayer.es/601742-Las-micotoxinascontaminantes-naturales-de-los-alimentos-abraham-mendez-albores-y-ernestomoreno-martinez.html
• Moss, M. O. (2002). Risk assessment for aflatoxins in foodstuffs. International Biodeterioration & Biodegradation, 50(3-4), 137-142. doi: 10.1016/S0964-8305(02)00078-1
• Nagini, S., Palitti, F., & Natarajan, A. T. (2015). Chemopreventive potential of chlorophyllin: A review of the mechanisms of action and molecular targets. Nutrition and Cancer, 67(2), 203-211. doi: 10.1080/01635581.2015.990573
• Nava-Ramírez, M. J., Salazar, A. M., Sordo, M., López-Coello, C., Téllez-Isaías, G., Méndez-Albores, A., & Vázquez-Durán, A. (2021). Ability of low contents of biosorbents to bind the food carcinogen aflatoxin B1 in vitro. Food Chemistry, 345, 128863. doi: 10.1016/j.foodchem.2020.128863
• Ndagijimana, R., Shahbaz, U., & Sun, X. (2020). Aflatoxin B1 in food and feed: An overview on prevalence, determination and control tactics. JAIR, 8, 144.
• Ornelas-Aguirre, J. M., & Fimbres-Morales, A. (2015). Aflatoxinas y su asociación con el desarrollo de carcinoma hepatocelular. CIMEL, 20(1), 33-39. Recuperado de https://www.cimel.felsocem.net/index.php/CIMEL/article/view/579/740
• Ramales-Valderrama, R. A., Vázquez-Durán, A., & Méndez-Albores, A. (2016). Biosorption of B-aflatoxins using biomasses obtained from formosa firethorn [Pyracantha koidzumii (Hayata) Rehder]. Toxins, 8(7), 218. doi: https://doi.org/10.3390/toxins8070218
• Rawal, S., Kim, J. E., & Coulombe, R., Jr. (2010). Aflatoxin B1 in poultry: Toxicology, metabolism and prevention. Research in Veterinary Science, 89(3), 325-331. doi: 10.1016/j.rvsc.2010.04.011
• Santos, R. R., Vermeulen, S., Haritova, A., & Fink-Gremmels, J. (2011). Isotherm modeling of organic activated bentonite and humic acid polymer used as mycotoxin adsorbents. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 28(11), 1578-1589. doi: 10.1080/19440049.2011.595014
• Sarrocco, S., Mauro, A., & Battilani, P. (2019). Use of competitive filamentous fungi as an alternative approach for mycotoxin risk reduction in staple cereals: State of art and future perspectives. Toxins, 11(12), 701. doi: 10.3390/toxins11120701
• Secretaría de Salud. (15 de octubre de 2002). Norma Oficial Mexicana NOM-188-SSA1-2002, Productos y Servicios. Control de aflatoxinas en cereales para consumo humano y animal. Especificaciones sanitarias. Diario Oficial de la Federación. Recuperada de http://www.salud.gob.mx/unidades/cdi/nomssa.html
• __________ (27 de septiembre de 2010). Norma Oficial Mexicana NOM-243-SSA1-2010, Productos y servicios. Leche, fórmula láctea, producto lácteo combinado y derivados lácteos. Disposiciones y especificaciones sanitarias. Métodos de prueba. Diario Oficial de la Federación. Recuperada de https://www.dof.gob.mx/nota_detalle.php?codigo=5160755&fecha=27/09/2010#gsc.tab=0
• Simonich, M. T., Egner, P. A., Roebuck, B. D., Orner, G. A., Jubert, C., Pereira, C., … Bailey, G. S. (2007). Natural chlorophyll inhibits aflatoxin B1-induced multi-organ carcinogenesis in the rat. Carcinogenesis, 28(6), 1294-1302. doi: 10.1093/carcin/bgm027
• Vila-Donat, P., Marín, S., Sanchis, V., & Ramos, A. J. (2018). A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food and Chemical Toxicology, 114, 246-259. doi: 10.1016/j.fct.2018.02.044
• Villers, P. (2014). Aflatoxins and safe storage. Frontiers in Microbiology, 5, 158. doi: https://doi.org/10.3389/fmicb.2014.0015
• Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129-144. doi: 10.1016/j.jscs.2010.06.006
• Zavala-Franco, A., Hernández-Patlán, D., Solís-Cruz, B., López-Arellano, R., Tellez-Isaias, G., Vázquez-Durán, A., & Méndez-Albores, A. (2018). Assessing the aflatoxin B1 adsorption capacity between biosorbents using an in vitro multicompartmental model simulating the dynamic conditions in the gastrointestinal tract of poultry. Toxins, 10(11), 484. doi: 10.3390/toxins10110484
Downloads
Published
How to Cite
License
Copyright (c) 2021 María de Jesús Nava-Ramírez, Alma Vázquez-Durán, Abraham Méndez-Albores
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)