Prediction of the influence of core vote on null vote in a democratic two-party electoral system
DOI:
https://doi.org/10.33064/iycuaa2016682252Keywords:
opinion network, simulation, spin network, core vote, null vote, electoral networkAbstract
In this work we analyze the possible effect that the core vote might have on the null vote in a two-party system, by introducing an opinion network with active agents (nodes) uniformly distributed in their initial state with a value called spin , spin , and spin . The first two values, called core votes, represent staunch supporters of a chosen political current; the last value represents inactive or undecided voters which might change to due to the interactions with their four closest acquaintances, also known as 4-neighbors. We conducted three studies. First we analyzed the relationship between the final concentration of active agents and the initial proportion of active agents, then we observed the final proportion of inactive agents with respect to the initial proportion of active agents, and finally, we observed the system evolution, with respect to the number of cycles that elapse before the system reaches stability.
Downloads
Metrics
References
• ALDRICH, J. H. Why Parties? The Origin and Transformation of Political Parties in America. Chicago, US: The University of Chicago Press, 1995.
• ALESINA, A. y SPEAR, S. E. An Overlapping Generation Model of Electoral Competition. Journal of Public Economics, 37(3): 359-379, 1988.
• BALANKIN, A. S. et al. Effect of initial concentration and spatial heterogeneity of active agent distribution on opinion dynamics. Physica A: Statistical Mechanics and its Applications, 390(21): 3876-3887, 2011.
• CHEN, P. y REDNER, S. Majority rule dynamics in finite dimensions. Physical Review E, 71(3): 036101, 2005.
• GALAM, S. Application of statistical physics to politics. Physica A, 274, 132-139, 1999.
• GIDDENS, A. Más allá de la izquierda y la derecha: El futuro de las políticas radicales. Madrid, España: Cátedra, 1996.
• HUANG, G. et al. The strength of the minority. Physica A, 387, 4665-4672, 2008.
• KNOKE, D. y YANG, S. Social Network Analysis (Quantitative Applications in the Social Sciences). US: Sage Publications, 2008.
• LAMBIOTTE, R. et al. Majority model on a network with communities. Physical Review E, 75, 030101(R), 2007.
• LIJPHART, A. Electoral Systems and Party Systems: A study of twenty-seven Democracies 1945-1990. Oxford, UK: Oxford University Press, 1994.
• MAINWARING, S. y SCULLY, T. R. Introduction: Party Systems in Latin America. En S. Mainwaring & T. R. Scully (Eds.), Building Democratic Institutions: Party Systems in Latin America (1-34). Stanford, CA, US: Stanford University Press, 1995.
• MIROIU, A. Characterizing majority rule: from profiles to societies. Economics Letters, 85(3): 359-363, 2004.
• PABJAN, B. y PEKALSKI, A. Model of opinion forming and voting. Physica A, 38, 6183, 2008.
• POPKIN, S. L. The Reasoning Voter: Communication and Persuasion in Presidential Campaigns. Chicago, US: The University of Chicago Press, 1991.
• RAE, D. The Political Consequences of Electoral Laws. New Haven, Connecticut, US: Yale University Press, 1969.
• REGENWETTER, M. et al. A general concept of majority rule. Mathematical Social Sciences, 43(3): 405-428, 2002.
• ROSENBLUM, N. L. On the Side of the Angels: An Appreciation of Parties and Partisanship. Princeton, NJ, US: Princeton University Press, 2008.
• SIRVENT, C. y DELGADILLO, F. Realineamiento del voto y nuevo orden electoral 1997. El Nacional, p. 2, jueves 10 de abril de 1997.
• TIDEMAN, T. N. A Majority-Rule Characterization with Multiple Extensions. Social Choice and Welfare, 3(1): 17-30, 1986.
• TOIVONEN, R. et al. A comparative study of social network models: Network evolution models and nodal attribute models. Social Networks, 31(2009): 240-254, 2009.
• TRAVIESO, G. y COSTA, L. F. Spread of opinions and proportional voting. Physical Review E, 74, 036112, 2006.
• TSALLIS, C. A majority rule model: real space renormalization group solution and finite size scaling. Journal de Physique Letters France, 43, L471-L476, 1982.
• VILELA, A. L. M. y MOREIRA, F. G. B. Majority-vote model with different agents. Physica A: Statistical Mechanics and its Applications, 388(19): 4171-4178, 2009.
• WASSERMAN, S. y FAUST, K. Social Network Analysis: Methods and Applications. Cambridge, UK-NY, US: Cambridge University Press, 1994.
• WILHEIM, G. Democracy in the digital age: challenges to political life in cyberspace. NY, US-London, UK: Routledge, 2000.
Downloads
Published
How to Cite
License
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)