Fermentation parameters and ruminal kinetics in steers supplements with different additives

Authors

  • Brenda Hernández Martínez Universidad Juárez del Estado de Durango
  • Manuel Murillo Ortiz Universidad Juárez del Estado de Durango
  • Gerardo Pamánes Carrasco Universidad Juárez del Estado de Durango
  • Osvaldo Reyes Estrada Universidad Juárez del Estado de Durango
  • Esperanza Herrera Torres Universidad Juárez del Estado de Durango

DOI:

https://doi.org/10.33064/iycuaa201772214

Keywords:

volatile fatty acids, N-NH3, monensin, glucogenic substrate, yeast

Abstract

This study aimed to evaluate the N-NH3 content, volatile fatty acids (VFA) concentration and pH using 4 ruminal fistulated steers (700 ± 100 kg) supplemented with different additives. Four diets concentrate-forage 70:30 (T1) were offered with a supplementation of monensin, yeast and a glucogenic substrate for T2, T3 and T4, respectively. Data were analyzed as a 4 x 4 latin square with factorial arrangement. Yeast supplementation increased propionate and decreased acetate concentrations (P <0.05); however, the other additives showed no effect on VFA (P >0.05). Likewise, yeast supplementation increased N-NH3 ( P <0.05) enhancing ruminal protein degradability and suggesting an increase in the fibrolytic microorganisms and promotes a higher digestibility rate. The pH was not affected by supplementation (P >0.05).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Brenda Hernández Martínez, Universidad Juárez del Estado de Durango

Facultad de Medicina Veterinaria y Zootecnia, Universidad Juárez del
Estado de Durango.

Manuel Murillo Ortiz, Universidad Juárez del Estado de Durango

Facultad de Medicina Veterinaria y Zootecnia, Universidad Juárez del Estado de Durango.

Gerardo Pamánes Carrasco, Universidad Juárez del Estado de Durango

Cátedras Conacyt, Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango

Osvaldo Reyes Estrada, Universidad Juárez del Estado de Durango

Facultad de Medicina Veterinaria y Zootecnia, Universidad Juárez del Estado de Durango

Esperanza Herrera Torres, Universidad Juárez del Estado de Durango

Facultad de Medicina Veterinaria y Zootecnia, Universidad Juárez del Estado de Durango

References

Aderinboye, R. Y., Onwuka, C. F., Arigbede, O. M., Oduguwa, O. O., & Aina, A. B. (2012). Effect of dietary monensin inclusion on performance, nutrient utilisation, rumen volatile fatty acid concentration and blood status of West African dwarf bucks fed with basal diets of forages. Tropical Animal Health and Production, 44(5), 1079-1087.

Bayat, A. R., Kairenius, P., Stefanski, T., Leskinen, H., Comtet Marre, S., Forano, E., …, Shingfield, K. J. (2015). Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Journal of Dairy Science, 98(5), 3166-3181.

Bergen, W. G., & Bates, D. B. (1984). Ionophores: their effect on production, efficiency and mode of action. Journal of Animal Science, 58(6), 1465-1483.

Carrillo-Herrera, J., Murillo-Ortiz, M., Herrera-Torres, E., Carrete-Carreón, F., Reyes-Estrada, O., & Livas-Calderón, F. (2016). Rendimiento productivo y calidad de la canal de becerros alimentados con un precursor glucogénico. Abanico Veterinario, 69(1), 13-21.

Cheeke, P. R. (2004). Applied animal nutrition: Feeds and feeding (3ª. ed.). Upper Saddler River, NJ: Prentice Hall.

Galindo, J., & Marrero, Y. (2005). Manipulación de la fermentación microbiana ruminal. Revista Cubana de Ciencia Agrícola, 39, 439-450.

Galyean, M. L., & May, T. (1995). Procedures in animal nutrition research. NM: New Mexico State University.

Ghorbani, G. R., Morgavi, D. P., Beauchemin, K. A., & Leedle, J. A. (2002). Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Journal of Animal Science, 80(7), 1977-1985.

Hassan, S. A., & Mohammed, S. F. (2016). Effect of Saccaromyces cerevisiae supplementation on rumen characteristics in awassi lambs fed diets with different roughage to concentrate ratios. The Iraqi Journal of Agricultural Sciences, 47(Special issue), 1-11.

Herrera, T. E. (2005). Efecto de las enzimas fibrolíticas exógenas y las levaduras vivas sobre la cinética digestiva y la producción de nitrógeno amoniacal ruminal en dietas para ganados de engorda (Tesis de maestría). Universidad Juárez del estado de Durango, México.

Instituto Nacional de Estadística, Geografía e Informática. (2004). Sistema para la consulta del cuaderno estadístico municipal [Base de datos]. Recuperado de www.inegi.org.mx/est/contenidos/espanol/sistemas/cem04/nacional/index.htm

Kamel, H. E. M., Sekine, J., El-Waziry, A. M., & Yacout, M. H. M. (2004). Effect of Saccharomyces cerevisiae on the synchronization of organic matter and nitrogen degradation kinetics and microbial nitrogen synthesis in sheep fed berseem hay (Trifolium alexandrinum). Small Ruminant Research, 52(3), 211-216. doi: 10.1016/j.smallrumres.2003.06.001

Khorrami, B., Vakili, A. R., Danesh Mesgaran, M., & Klevenhusen, F. (2015). Thyme and cinnamon essential oils: Potential alternatives for monensin as a rumen modifier in beef production systems. Animal Feed Science and Technology, 200, 8-16. doi: 10.1016/j.anifeedsci.2014.11.009

Kunkle, W. E., Johns, J. T., Poore, M. H., & Herd, D. B. (2000). Designing supplementation programs for beef cattle fed forages-based diets. Journal of Animal Science, 77(E-suppl.), 1-11.

Livas, C. F., Torillo, P. J., & Mireles, O. R. (agosto, 2013). Comparación de 2 niveles de un sustrato gluconeogénico en la engorda de toretes estabulados en el trópico seco de Veracruz, México. Memorias Científicas. XXXVII Congreso Nacional de Buiatría. Acapulco, México: Asociación Mexicana de Médicos Veterinarios Especializados en Bovinos, A. C.

Matras, J., Klebaniuk, R., & Kowalczuk-Vasilev, E. (2012). Impact of glucogenic additive in transition dairy cow diets of varying ruminal starch degradability on yield and composition of milk and reproductive parameters. Czech Journal of Animal Science, 57(7), 301-311.

Mertens, D. R., & Ely, L. O. (1979). A dynamic model of fiber digestion and passage in the ruminant for evaluating forage quality. Journal of Animal Science, 49, 1085-1095.

Murillo, O. M., Cervantes, J., Castro, H. L., Sánchez, F., Vázquez, S., & Zinn, R. (2001). Efecto de fibroenzimas sobre la digestión ruminal y flujo postruminal de la fracción fibra en dietas de bovinos de carne. Biotecnología en la Industria de la Alimentación Animal. Brasil: Alltech.

National Research Council. (2000). Nutrient requirements of beef cattle (7ª. ed.). Washington, DC: National Academies Press. doi: 10.17226/9791

Oeztuerk, H., Emre, B., & Breves, G. (2016). Effects of hydrolysed yeasts on ruminal fermentation in the rumen simulation technique (Rusitec). Veterinární Medicína, 61(4), 195-203. doi: 10.17221/8820-VETMED

Öztürk, H., Salgirli Demirbas, Y., Aydin, F. G., Pişkin, I., Ünler, F. M., & Emre, M. B. (2015). Effects of hydrolyzed and live yeasts on rumen microbial fermentation in a semicontinuous culture system (Rusitec). Turkish Journal of Veterinary and Animal Sciences, 39, 556-559.

Quiñones, G.A. (2011). Cultivo de levaduras vivas, y su efecto sobre la digestión del nitrógeno y la cinética ruminal de fracción líquida en dietas para bovinos de engorda (Tesis de maestría). Universidad Juárez del Estado de Durango, Durango, México.

Rodríguez Muela, C., Aguirre, E., Salvador, F., Ruiz, O., Arzola, C., La, O., & Villalobos, C. (2010). Producción de gas, ácidos grasos volátiles y nitrógeno amoniacal in vitro con dietas basadas en pasto seco. Revista Cubana de Ciencia Agrícola, 44(3), 251-259.

Satter, L. D., & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition, 32(2), 199-208.

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (2010). Manual de buenas prácticas pecuarias en el sistema de producción de ganado productor de carne en confinamiento. Recuperado el 16 de enero 2017, de www. sagarpa.gob.mx/ganaderia/Publicaciones/Documents/.../manual_bovino.pdf

Ungerfeld, E. M. (2015). Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Frontiers in Microbiology, 6, 1-17. doi: 10.3389/fmicb.2015.00037

Van Soest, P. J. (1994). Nutritional ecology of the ruminant (2ª. ed.). New York, NY: Cornell University Press.

Zhu, W., Wei, Z., Xu, N., Yang, F., Yoon, I., Chung, Y., …, Wang, J. (2017). Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology, 8: 36.

doi: 10.1186/s40104-017-0167-3

Zinn, R. A., Gulati, S. K., Plascencia, A., & Salinas, J. (2000). Influence of ruminal biohydrogenation on the feeding value of fat in finishing diets for feedlot cattle. Journal of Animal Science, 78(7), 1738-1746.

Published

2017-11-29

How to Cite

Hernández Martínez, B., Murillo Ortiz, M., Pamánes Carrasco, G., Reyes Estrada, O., & Herrera Torres, E. (2017). Fermentation parameters and ruminal kinetics in steers supplements with different additives. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (72), 5–11. https://doi.org/10.33064/iycuaa201772214

Issue

Section

Artículos de Investigación

Categories