Recovering the Green function by means of seismic noise
DOI:
https://doi.org/10.33064/iycuaa201873206Keywords:
poisson ratio, seis waves, correlations of movements, synthetic seismograms, recovered seismograms, seismic energyAbstract
It has recently been shown that the recovery of the Green function can be performed from seismic noise. This function is the fundamental characteristic of the medium where seismic waves propagate. In this work a 2D formulation is proposed which allows the recovery of the Green function from seismic noise. Several homogenous media characterized by their propagation velocities and Poisson ratio are studied. In addition, for the two-dimensional case, where only P and SV waves are propagated, the energy contributions corresponding to each type of seismic wave are discussed and verified.
Downloads
Metrics
References
Aki, K. (1957). Space and time spectra of stationary stochastic waves with special reference to microtremors. Bulletin of the Earthqake Research Institute, 35, 415-456.
__________, & Richards, P. G. (2002). Quantitative Seismology (2a. ed.). US: University Science Books.
Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549.
Garus, D., & Wegler, U. (2011). The Green’s functions constructed from 17 years of ambient seismic noise recorded at ten stations of the German Regional Seismic Network. Bulletin of the Seismological Society of America, 101(6), 2833-2842.
Liu, E., & Zhang, Z. (2001). Numerical study of elastic wave scattering by distributed cracks or cavities using the boundary integral method. Journal of Computational Acoustics, 9, 1039-1054.
Ma, S., & Beroza, G. (2012). Ambient-field Green’s functions from asynchronous seismic observations. Geophysical Research Letters, 39(6), L06301. doi: 10.1029/2011GL050755
Ryzhik, L. V., Papanicolau, G. C., & Keller, J. B. (1996). Transport equations for elastic and other waves in random media. Wave Motion, 24(4), 327-370.
Sánchez-Sesma, F. J., & Campillo, M. (1991). Diffraction of P, SV and Rayleigh waves by topographic features: A boundary integral formulation. Bulletin of the Seismological Society of America, 81(6), 2234-2253.
Sánchez-Sesma, F. J., Pérez-Ruiz, J. A., Luzón, F., Campillo, M., & Rodríguez-Castellanos, A. (2008). Diffuse fields in dynamic elasticity. Wave Motion, 45(5), 641-654.
Sato, H., & Fehler, M. C. (1998). Seismic wave propagation and scattering in the heterogeneous Earth. US: Springer-Verlag.
Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), L07614. doi:10.1029/2004GL019491
Van Manen, D. J., Curtis, A., & Robertsson, J. O. (2006). Interferometric modeling of wave propagation in inhomogeneous elastic media using time-reversal and reciprocity. Geophysics, 71(4), SI47-SI60.
Wapenaar, K. (2004). Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters, 93, 254301-1-254301-4.
Weaver, R. L. (2005). Geophysics. Information from seismic noise. Science, 307(5715), 1568-1569.
__________, & Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function. The Journal of the Acoustical Society of America, 116, 2731-2734. doi: 10.1121/1.1810232
Downloads
Published
How to Cite
License
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)