Recovering the Green function by means of seismic noise

Authors

  • Francisco José Sánchez Sesma Universidad Nacional Autónoma de México
  • Manuel Carbajal Romero Instituto Politécnico Nacional Unidad Profesional Azcapotzalco
  • José Efraín Rodríguez Sánchez Instituto Mexicano del Petróleo
  • Rafael Ávila Carrera Instituto Mexicano del Petróleo
  • Alejandro Rodríguez Castellanos Instituto Mexicano del Petróleo

DOI:

https://doi.org/10.33064/iycuaa201873206

Keywords:

poisson ratio, seis waves, correlations of movements, synthetic seismograms, recovered seismograms, seismic energy

Abstract

It has recently been shown that the recovery of the Green function can be performed from seismic noise. This function is the fundamental characteristic of the medium where seismic waves propagate. In this work a 2D formulation is proposed which allows the recovery of the Green function from seismic noise. Several homogenous media characterized by their propagation velocities and Poisson ratio are studied. In addition, for the two-dimensional case, where only P and SV waves are propagated, the energy contributions corresponding to each type of seismic wave are discussed and verified.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Francisco José Sánchez Sesma, Universidad Nacional Autónoma de México

Instituto de Ingeniería, Universidad Nacional Autónoma de México. Circuito Escolar s/n, C.P. 04510, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México.

Manuel Carbajal Romero, Instituto Politécnico Nacional Unidad Profesional Azcapotzalco

Sección de Estudios de Posgrado e Investigación, Escuela Superior de Mecánica y Eléctrica, Instituto Politécnico Nacional, Unidad Profesional Azcapotzalco. Av. de las Granjas 682, C.P. 02250, Col. Santa Catarina, Del. Azcapotzalco, Ciudad de México, México.

José Efraín Rodríguez Sánchez, Instituto Mexicano del Petróleo

Instituto Mexicano del Petróleo. Eje Central Lázaro Cárdenas 152, C.P. 07730, Gustavo A. Madero, Ciudad de México, México.

Rafael Ávila Carrera, Instituto Mexicano del Petróleo

Instituto Mexicano del Petróleo. Eje Central Lázaro Cárdenas 152, C.P. 07730, Gustavo A. Madero, Ciudad de México, México.

Alejandro Rodríguez Castellanos, Instituto Mexicano del Petróleo

Instituto Mexicano del Petróleo. Eje Central Lázaro Cárdenas 152, C.P. 07730, Gustavo A. Madero, Ciudad de México, México.

References

Aki, K. (1957). Space and time spectra of stationary stochastic waves with special reference to microtremors. Bulletin of the Earthqake Research Institute, 35, 415-456.

__________, & Richards, P. G. (2002). Quantitative Seismology (2a. ed.). US: University Science Books.

Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549.

Garus, D., & Wegler, U. (2011). The Green’s functions constructed from 17 years of ambient seismic noise recorded at ten stations of the German Regional Seismic Network. Bulletin of the Seismological Society of America, 101(6), 2833-2842.

Liu, E., & Zhang, Z. (2001). Numerical study of elastic wave scattering by distributed cracks or cavities using the boundary integral method. Journal of Computational Acoustics, 9, 1039-1054.

Ma, S., & Beroza, G. (2012). Ambient-field Green’s functions from asynchronous seismic observations. Geophysical Research Letters, 39(6), L06301. doi: 10.1029/2011GL050755

Ryzhik, L. V., Papanicolau, G. C., & Keller, J. B. (1996). Transport equations for elastic and other waves in random media. Wave Motion, 24(4), 327-370.

Sánchez-Sesma, F. J., & Campillo, M. (1991). Diffraction of P, SV and Rayleigh waves by topographic features: A boundary integral formulation. Bulletin of the Seismological Society of America, 81(6), 2234-2253.

Sánchez-Sesma, F. J., Pérez-Ruiz, J. A., Luzón, F., Campillo, M., & Rodríguez-Castellanos, A. (2008). Diffuse fields in dynamic elasticity. Wave Motion, 45(5), 641-654.

Sato, H., & Fehler, M. C. (1998). Seismic wave propagation and scattering in the heterogeneous Earth. US: Springer-Verlag.

Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), L07614. doi:10.1029/2004GL019491

Van Manen, D. J., Curtis, A., & Robertsson, J. O. (2006). Interferometric modeling of wave propagation in inhomogeneous elastic media using time-reversal and reciprocity. Geophysics, 71(4), SI47-SI60.

Wapenaar, K. (2004). Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters, 93, 254301-1-254301-4.

Weaver, R. L. (2005). Geophysics. Information from seismic noise. Science, 307(5715), 1568-1569.

__________, & Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function. The Journal of the Acoustical Society of America, 116, 2731-2734. doi: 10.1121/1.1810232

Published

2018-01-31

How to Cite

Sánchez Sesma, F. J., Carbajal Romero, M., Rodríguez Sánchez, J. E., Ávila Carrera, R., & Rodríguez Castellanos, A. (2018). Recovering the Green function by means of seismic noise. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (73), 49–57. https://doi.org/10.33064/iycuaa201873206

Issue

Section

Artículos de Investigación

Categories