Experimental determination and verification by the finite element method of the natural vibration frequency of wooden bars
DOI:
https://doi.org/10.33064/iycuaa2019761789Keywords:
mechanical characterization, density of wood, dynamic modulus, transverse vibrations, material parameters, numerical modelingAbstract
The finite element method has been used extensively in the mechanical characterization of wood. The objective of the research was to determine experimentally and verify numerically, the natural frequency in transverse vibrations of small bars of 12 woods. The density, the frequency of vibration and the dynamic module were determined experimentally. In addition, the frequency corresponding to the material parameters determined experimentally was numerically estimated. The use of the dynamic module obtained experimentally and used on simulations, leads to frequency values equivalent to those obtained in vibration tests, thus proving the efficiency of numerical modeling to estimate the frequency of a piece of wood. In addition, the correlation between the numerical frequency and the experimental frequency explains 66% of this dependence. Thus, the calculated linear regression indicates a good predictive quality of the simulation model used in the investigation.
Downloads
Metrics
References
• Baño, V., Arriaga, F., Soilán, A., & Guaita, M. (2011). Prediction of bending load capacity of timber beams using a finite element method simulation of knots and grain deviation. Biosystems Engineering, 109(4), 241-249. doi: 10.1016/j.biosystemseng.2011.05.008
• Christoforo, A. L., Panzera, T. H., Silveira, M, E., Lopes Silva, D. A., Vasconcelos Pinheiro, R., & Rocco Lahr, F. A. (2016). Numerical evaluation of the bending modulus of elasticity in Pinus elliottii round timber beams. Ciência Florestal, 26(4),1271-1279. doi: 10.5902/1980509825138
• De Amicis, R., Riggio, M., Girardi, G., & Piazza, M. (2011). Morphology-based macro-scale finite-element timber models. Computer-Aided Design, 43(1), 72-87. doi: 10.1016/j.cad.2010.09.003
• De Borst, K., Jenkel, C., Montero, C., Colmars, J., Gril, J., Kaliske, M., & Eberhardsteiner, J. (2013). Mechanical characterization of wood: An integrative approach ranging from nanoscale to structure. Computers and Structures, 127, 53-67. doi: 10.1016/j.compstruc.2012.11.019
• Gaff, M., Gašparik, M., Borůvka, V., & Babiak, M. (2015). Simulating stresses associated with the bending of wood using a Finite Element M. BioResources, 10(2), 2009-2019. doi: 10.15376/biores.10.2.2009-2019
• García, D. A., Sampaio, R., & Rosales, M. B. (2016). Eigenproblems in timber structural elements with uncertain properties. Wood Science and Technology, 50(4), 807-832. doi: 10.1007/s00226-016-0810-8
• Gonçalves, R., Trinca, A. J., & Pellis, B. P. (2014). Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Science and Technology, 48(2), 269-287. doi: 10.1007/s00226-013-0598-8
• Guitard, D., & Gachet, C. (2004). Paramètres structuraux et/ou ultrastructuraux facteurs de la variabilité intra-arbre de l’anisotropie élastique du bois. Annals of Forest Science, 61(2), 129-139. doi: 10.1051/forest:2004004
• Gutiérrez Pulido, H., & De la Vara Salazar, R. (2012). Análisis y diseño de experimentos (3ª. ed). México: McGraw-Hill.
• Hackspiel, C., de Borst, K., & Lukacevic, M. (2014a). A numerical simulation tool for wood grading model development. Wood
Science and Technology, 48(3), 633-649. doi: 10.1007/s00226-014-0629-0
• __________ (2014b). A numerical simulation tool for wood grading: Model validation and parameters studies. Wood Science and Technology, 48(3), 651-669. doi: 10.1007/s00226-014-0630-7
• Hanhijärvi, A., Ranta-Maunus, A., & Turk, G. (2005). Potential of strength grading of timber with combined measurement techniques. Report of the Combigrade-project-phase 1. Finland: VTT Publications. Recuperado de http://www.vtt.fi/inf/pdf/publications/2005/P568.pdf
• Hofstetter, K., Hellmich, C., & Eberhardsteiner, J. (2004). Hierarchical organization of wood revisited in the framework of continuum micromechanics. En P. Neittaanmäki et al. (Eds.), European Congress on Computational Methods in Applied Sciences and Engineering (pp. 1-21). Jyväskylä: University of Jyväskylä. Recuperado de https://www.researchgate.net/publication/267236732_Hierarchical_organization_of_wood_revisited_in_the_framework_of_continuum_micromechanics
• Hwang, Y. F., & Suzuki, H. (2016). A finite-element analysis on the free vibration of Japanese drum wood barrels under material property uncertainty. Acoustical Science and Technology, 37(3), 115-122. doi: 10.1250/ast.37.115
• International Organization for Standardization. (2012). ISO 3129:2012. Wood. Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens. Geneva: International Organization for Standardization. Recuperado de https://www.iso.org/
standard/52489.html
• International Organization for Standardization. (2014a). ISO 13061-1:2014. Wood. Determination of moisture content for physical and mechanical tests. Geneva: International Organization for Standardization. Recuperado de https://www.iso.org/standard/60063.html
• International Organization for Standardization. (2014b). ISO 13061-2:2014. Wood. Determination of density for physical and mechanical tests. Geneva: International Organization for Standardization. Recuperado de https://www.iso.org/standard/60064.html
• Kandler, G., Füssl, J., & Eberhardsteiner, J. (2015). Stochastic finite element approaches for wood-based products: Theoretical framework and review of methods. Wood Science and Technology, 49(5), 1055-1097. doi: 10.1007/s00226-015-0737-5
• Kandler, G., Füssl, J., Serrano, E., & Eberhardsteiner, J. (2015). Effective stiffness prediction of GLT beams based on stiffness distributions of individual lamellas. Wood Science and Technology, 49(6), 1101-1121. doi: 10.1007/s00226-015-0745-5
• Kouroussis, G., Ben Fekih, L., & Descamps, T. (2017). Assessment of timber element mechanical properties using experimental modal analysis. Construction and Building Materials, 134, 254-261. doi: 10.1016/j.conbuildmat.2016.12.081
• Lukacevic, M., Füssl, J., Griessner, M., & Eberhardsteiner, J. (2014). Performance assessment of a numerical simulation tool for wooden boards with knots by means of full-field deformation measurements: Performance assessment of a numerical simulation tool for wooden boards. Strain, 50(4), 301-317. doi: 10.1111/str.12093
• Machek, L., Militz, H., & Sierra-Alvarez, R. (2001). The use of an acoustic technique to assess wood decay in laboratory soilbed tests. Wood Science and Technology, 34(6), 467-472. doi: 10.1007/s002260000070
• Mackerle, J. (2005). Finite element analyses in wood research: A bibliography. Wood Science and Technology, 39(7), 579-600. doi: 10.1007/s00226-005-0026-9
• Niklas, K. J., & Spatz, H. C. (2010). Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 97(10), 1587-1594. doi: 10.3732/ajb.1000150
• Ormarsson, S., Dahlblom, O., & Johansson, M. (2009). Finite element study of growth stress formation in wood and related distortion of sawn timber. Wood Science and Technology, 43(5-6), 387-403. doi: 10.1007/s00226-008-0209-2
• Silva Guzmán, J. A., Fuentes Talavera, F. J., Rodríguez Anda, R., Torres Andrade, P. A., Lomelí Ramírez, M. A., Ramos Quirarte, J.,… & Richter, H. G. (2010). Fichas de propiedades tecnológicas y usos de maderas nativas de México e importadas. México: Comisión Nacional Forestal.
• Sotomayor-Castellanos, J. R. (2015). Banco FITECMA de características físico-mecánicas de maderas mexicanas (65 p.). Morelia: Universidad Michoacana de San Nicolás de Hidalgo. Recuperado de https://www.researchgate.net/publication/276841418_Banco_FITECMA_de_caracteristicas_fisico-mecanicas_de_maderas_Mexicanas
• Sotomayor-Castellanos, J. R., & López-Garza, V. (2016). Verificación por el método del elemento finito del comportamiento mecánico de la madera en flexión estática. Investigación e Ingeniería de la Madera, 12(3), 4-54. Recuperado de https://www.researchgate.net/publication/311651698_Verificacion_por_el_metodo_del_elemento_finito_del_comportamiento_mecanico_de_la_madera_en_flexion_estatica
• Tamarit Urias, J. C., & López Torres, J. L. (2007). Xilotecnología de los principales árboles tropicales de México. México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias campo experimental San Martinito.
• Vasic, S., Smith, I., & Landis, E. (2005). Finite element techniques and models for wood fracture mechanics. Wood Science and Technology, 39(1), 3-17. doi: 10.1007/s00226-004-0255-3
• Villaseñor-Aguilar, J. M., & Sotomayor-Castellanos, J. R. (2015). Caracterización dinámica de la madera de Fraxinus americana y Fraxinus uhdei. Revista de Aplicación Científica y Técnica, 1(1), 43-53. Recuperado de http://www.ecorfan.org/spain/researchjournals/Aplicacion_Cientifica_y_Tecnica/vol1num1/Aplicacion-Cientifica-y-Tecnica--50-60.pdf
• Weaver, W., Timoshenko, S., & Young, D. H. (1990). Vibration problems in engineering (5a. ed.). New York: Wiley.
Downloads
Published
How to Cite
License
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)