Modeling a public hospital's emergency department with feedback open queue networks

Authors

  • Gonzalo Everardo Aceves-Gómez Universidad de Guadalajara
  • Ricardo Armando González-Silva Universidad de Guadalajara
  • Héctor Alfonso Juárez-López Universidad de Guadalajara
  • Rodolfo Rafael Medina Ramírez Universidad Politécnica de Aguascalientes
  • José Antonio Vázquez-Ibarra Universidad Politécnica de Aguascalientes

DOI:

https://doi.org/10.33064/iycuaa2018741737

Keywords:

queueing model, emergency, probability route matrix, efficiency indicators

Abstract

This work proposes a model of open queue network with feedback, from the emergency department, to understand their behavior and make strategic decisions. In the queueing network, a probability route matrix is established to determine the general behavior variants of this model. It generates a range of scenarios with different behavior patterns; with the numerical results, we analyze the efficiency indicators of Queueing Theory on the three locations: clinics, laboratories, and observation-gypsum-sutures, which are modeled as M/M/s, M/G/1 and M/M/1, respectively. The numerical results show the sensibility of the emergency department behavior and the optimally performance, using the probability route matrix values.

Downloads

Metrics

Visualizaciones del PDF
222
Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202674
|

Author Biographies

Gonzalo Everardo Aceves-Gómez, Universidad de Guadalajara

Centro Universitario de los Lagos, Maestría en Ciencia y Tecnología.

Ricardo Armando González-Silva, Universidad de Guadalajara

Centro Universitario de los Lagos, Departamento de Ciencias Exactas y Tecnología

Héctor Alfonso Juárez-López, Universidad de Guadalajara

Centro Universitario de los Lagos, Departamento de Ciencias Exactas y Tecnología

Rodolfo Rafael Medina Ramírez, Universidad Politécnica de Aguascalientes

Departamento de Posgrado e Investigación

José Antonio Vázquez-Ibarra, Universidad Politécnica de Aguascalientes

Programa Académico de Ingeniería Industrial

References

• Au-Yeung, S. W. M., Harrison, P. G., & Knottenbelt, W. J. (2006). A queueing network model of patient flow in an accident and emergency department. Proceedings of the 20th Annual European and Simulation Modelling Conference, 60-67.

• Cochran, J. K., & Roche, K. T. (2009). A multi-class queuing network analysis methodology for improving hospital emergency department performance. Computers and Operations Research, 36(5), 1497-1512. doi: 10.1016/j.cor.2008.02.004

• Côté, M. J. (2000). Understanding patient flow. Decision Line, 31(2), 8-10.

• Derlet, R. W., Richards, J. R., & Kravitz, R. L. (2008). Frequent overcrowding in US emergency departments. Academic Emergency Medicine, 8(2), 151-155. doi: 10.1111/j.1553-2712.2001.tb01280.x

• Filipowicz, B., & Kwiecień, J. (2008). Queueing systems and networks. Models and applications. Bulletin of the Polish Academy of Sciences, Technical Sciences, 56(4), 379-390.

• Gómez Dantés, O., Sesma, S., Becerril, V. M., Knaul, F. M., Arreola, H., & Frenk, J. (2011). Sistema de salud de México. Salud Pública de Mexico, 53(Supl. 2), S220-S232. Recuperado de http://www.scielo.org.mx/pdf/spm/v53s2/17.pdf

• Gross, D., & Harris, C. M. (1998). Fundamentals of queueing theory (3nd. ed.). John Wiley & Sons. doi: 10.1002/9781118625651

• Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operation Research (7th ed.). New York, NY: McGraw Hill.

• Hospitalesmexico.com © Datos públicos. (s. f.). Directorio hospitales, clínicas y consultorios en México [Portal electrónico]. Recuperado de https://hospitalesmexico.com/

• Izady, N., & Worthington, D. (2012). Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments. European Journal of Operational Research, 219(3), 531-540. doi:10.1016/j.ejor.2011.10.040

• Jiang, L., & Giachetti, R. E. (2008). A queueing network model to analyze the impact of parallelization of care on patient cycle time. Health Care Management Science, 11(3), 248-261. doi: 10.1007/s10729-007-9040-9

• Jlassi, J., Mhamedi, A. E., & Chabchoub, H. (2009). Networks of queues with multiple customer types: Application in emergency departments. International Journal of Behavioural and Healthcare Research, 1(4), 400. doi: 10.1504/IJBHR.2009.032157

• Krieger, U. R. (2008). Queueing networks and Markov chains, 2nd edition by G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. John Wiley & Sons, Hoboken, NJ, 2006, 878 pages, ISBN 0-471-56525-3. Book review. IIE Transactions, 40(5), 567-568. doi: 10.1080/07408170701623187

• Mayhew, L., & Smith, D. (2008). Using queuing theory to analyse the government’s 4-H completion time target in accident and emergency departments. Health Care Management Science, 11(1), 11-21. doi: 10.1007/s10729-007-9033-8

• Olorunsola, S. A., Adeleke, R. A., & Ogunlade, T. O. (2014). Queueing analysis of patient flow in hospital. IOSR Journal of Mathematics, 10(4) Ver. VI, 47-53.

• Vázquez I., J. A., González S., R. A., & Juárez L., H. A. (2014). Modelado computacional de un servicio de urgencias considerando las variables relacionadas con el factor humano y con los tiempos de atención en consulta de acuerdo con el diagnóstico (Tesis doctoral). Centro Universitario de los Lagos-UdeG, México.

• Véricourt, F. de, & Jennings, O. B. (2011). Nurse staffing in medical units: A queueing perspective. Operations Research, 59(6), 1320-1331. doi: 10.1287/opre.1110.0968

• Zhu, H., Gong, J., & Tang, J. (2013). A queuing network analysis model in emergency departments. IEEE Xplore, 1829-1834.

Published

2018-05-31

How to Cite

Aceves-Gómez, G. E., González-Silva, R. A., Juárez-López, H. A., Medina Ramírez, R. R., & Vázquez-Ibarra, J. A. (2018). Modeling a public hospital’s emergency department with feedback open queue networks. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (74), 48–57. https://doi.org/10.33064/iycuaa2018741737

Issue

Section

Artículos de Investigación

Categories