Modeling a public hospital's emergency department with feedback open queue networks

Authors

  • Gonzalo Everardo Aceves-Gómez Universidad de Guadalajara
  • Ricardo Armando González-Silva Universidad de Guadalajara
  • Héctor Alfonso Juárez-López Universidad de Guadalajara
  • Rodolfo Rafael Medina Ramírez Universidad Politécnica de Aguascalientes
  • José Antonio Vázquez-Ibarra Universidad Politécnica de Aguascalientes

DOI:

https://doi.org/10.33064/iycuaa2018741737

Keywords:

queueing model, emergency, probability route matrix, efficiency indicators

Abstract

This work proposes a model of open queue network with feedback, from the emergency department, to understand their behavior and make strategic decisions. In the queueing network, a probability route matrix is established to determine the general behavior variants of this model. It generates a range of scenarios with different behavior patterns; with the numerical results, we analyze the efficiency indicators of Queueing Theory on the three locations: clinics, laboratories, and observation-gypsum-sutures, which are modeled as M/M/s, M/G/1 and M/M/1, respectively. The numerical results show the sensibility of the emergency department behavior and the optimally performance, using the probability route matrix values.

Downloads

Author Biographies

Gonzalo Everardo Aceves-Gómez, Universidad de Guadalajara

Centro Universitario de los Lagos, Maestría en Ciencia y Tecnología.

Ricardo Armando González-Silva, Universidad de Guadalajara

Centro Universitario de los Lagos, Departamento de Ciencias Exactas y Tecnología

Héctor Alfonso Juárez-López, Universidad de Guadalajara

Centro Universitario de los Lagos, Departamento de Ciencias Exactas y Tecnología

Rodolfo Rafael Medina Ramírez, Universidad Politécnica de Aguascalientes

Departamento de Posgrado e Investigación

José Antonio Vázquez-Ibarra, Universidad Politécnica de Aguascalientes

Programa Académico de Ingeniería Industrial

References

• Au-Yeung, S. W. M., Harrison, P. G., & Knottenbelt, W. J. (2006). A queueing network model of patient flow in an accident and emergency department. Proceedings of the 20th Annual European and Simulation Modelling Conference, 60-67.

• Cochran, J. K., & Roche, K. T. (2009). A multi-class queuing network analysis methodology for improving hospital emergency department performance. Computers and Operations Research, 36(5), 1497-1512. doi: 10.1016/j.cor.2008.02.004

• Côté, M. J. (2000). Understanding patient flow. Decision Line, 31(2), 8-10.

• Derlet, R. W., Richards, J. R., & Kravitz, R. L. (2008). Frequent overcrowding in US emergency departments. Academic Emergency Medicine, 8(2), 151-155. doi: 10.1111/j.1553-2712.2001.tb01280.x

• Filipowicz, B., & Kwiecień, J. (2008). Queueing systems and networks. Models and applications. Bulletin of the Polish Academy of Sciences, Technical Sciences, 56(4), 379-390.

• Gómez Dantés, O., Sesma, S., Becerril, V. M., Knaul, F. M., Arreola, H., & Frenk, J. (2011). Sistema de salud de México. Salud Pública de Mexico, 53(Supl. 2), S220-S232. Recuperado de http://www.scielo.org.mx/pdf/spm/v53s2/17.pdf

• Gross, D., & Harris, C. M. (1998). Fundamentals of queueing theory (3nd. ed.). John Wiley & Sons. doi: 10.1002/9781118625651

• Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operation Research (7th ed.). New York, NY: McGraw Hill.

• Hospitalesmexico.com © Datos públicos. (s. f.). Directorio hospitales, clínicas y consultorios en México [Portal electrónico]. Recuperado de https://hospitalesmexico.com/

• Izady, N., & Worthington, D. (2012). Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments. European Journal of Operational Research, 219(3), 531-540. doi:10.1016/j.ejor.2011.10.040

• Jiang, L., & Giachetti, R. E. (2008). A queueing network model to analyze the impact of parallelization of care on patient cycle time. Health Care Management Science, 11(3), 248-261. doi: 10.1007/s10729-007-9040-9

• Jlassi, J., Mhamedi, A. E., & Chabchoub, H. (2009). Networks of queues with multiple customer types: Application in emergency departments. International Journal of Behavioural and Healthcare Research, 1(4), 400. doi: 10.1504/IJBHR.2009.032157

• Krieger, U. R. (2008). Queueing networks and Markov chains, 2nd edition by G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. John Wiley & Sons, Hoboken, NJ, 2006, 878 pages, ISBN 0-471-56525-3. Book review. IIE Transactions, 40(5), 567-568. doi: 10.1080/07408170701623187

• Mayhew, L., & Smith, D. (2008). Using queuing theory to analyse the government’s 4-H completion time target in accident and emergency departments. Health Care Management Science, 11(1), 11-21. doi: 10.1007/s10729-007-9033-8

• Olorunsola, S. A., Adeleke, R. A., & Ogunlade, T. O. (2014). Queueing analysis of patient flow in hospital. IOSR Journal of Mathematics, 10(4) Ver. VI, 47-53.

• Vázquez I., J. A., González S., R. A., & Juárez L., H. A. (2014). Modelado computacional de un servicio de urgencias considerando las variables relacionadas con el factor humano y con los tiempos de atención en consulta de acuerdo con el diagnóstico (Tesis doctoral). Centro Universitario de los Lagos-UdeG, México.

• Véricourt, F. de, & Jennings, O. B. (2011). Nurse staffing in medical units: A queueing perspective. Operations Research, 59(6), 1320-1331. doi: 10.1287/opre.1110.0968

• Zhu, H., Gong, J., & Tang, J. (2013). A queuing network analysis model in emergency departments. IEEE Xplore, 1829-1834.

Published

2018-05-31

How to Cite

Aceves-Gómez, G. E., González-Silva, R. A., Juárez-López, H. A., Medina Ramírez, R. R., & Vázquez-Ibarra, J. A. (2018). Modeling a public hospital’s emergency department with feedback open queue networks. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (74), 48–57. https://doi.org/10.33064/iycuaa2018741737

Issue

Section

Artículos de Investigación

Categories