Implementation of a system to evaluate neurotoxicity of environmental pollutants in zebrafish larvae (Danio rerio)
DOI:
https://doi.org/10.33064/iycuaa2018741718Keywords:
zebrafish, neurotoxicity, arsenic, atrazine, thiametoxam, pesticidesAbstract
Currently, a wide variety of pollutants are detected in the environment with implications for both health and biodiversity, its high number has made it difficult to study with in vitro and in vivo methods of experimentation. A low cost system was implemented to evaluate the toxic effects of environmental pollutants, using the motor activity as neurotoxicity marker in zebrafish model. Embryos were exposed to inorganic arsenic (Asi) 0.05, 0.5, 5, 50 mg/l, atrazine (ATR) 0.03, 0.3, 3, 10 mg/l and thiamethoxam (TMX) 14.5, 29.1, 43.6 mg/l. Motor activity increased in larvae exposed to ATR and Asi and decreased with the high dose of TMX. These data suggest that system is sensitive for to detect changes in motor behavior in zebrafish larvae, which may contribute to increase the study of environmental pollutants with neurotoxic potential.
Downloads
Metrics
References
• Bardullas, U., Giordano, M., & Rodríguez, V. M. (2011). Chronic atrazine exposure causes disruption of the spontaneous locomotor activity and alters the striatal dopaminergic system of the male Sprague-Dawley rat. Neurotoxicology and Teratology, 33(2), 263-272.
• Bardullas, U., Limón-Pacheco, J. H., Giordano, M., Carrizales, L., Mendoza-Trejo, M. S., & Rodríguez, V. M. (2009). Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice. Toxicology and Applied Pharmacology, 239(2), 169-177.
• Calderón, J., Navarro, M. E., Jimenez-Capdeville, M. E., Santos-Diaz, M. A., Golden, A., Rodriguez-Leyva, I.,… Diaz-Barriga, F. (2001). Exposure to arsenic and lead and neuropsychological development in Mexican children. Environmental Research, 85(2), 69-76.
• Camacho, L. M., Gutiérrez, M., Alarcón-Herrera, M. T., Villalba, M. L., & Deng, S. (2011). Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere, 83(3), 211-225.
• Cao, J., Xu, X., Hylkema, M. N., Zeng, E. Y., Sly, P. D., Suk, W. A., … Huo, X. (2016). Early-life exposure to widespread environmental toxicants and health risk: A focus on the immune and respiratory systems. Annals of Global Health, 82(1), 119-131.
• Crofton, K. M., Howard, J. L., Moser, V. C., Gill, M. W., Reiter, L. W., Tillson, H. A., & MacPhail, R. C. (1991). Interlaboratory comparison of motor activity experiments: Implications for neurotoxicological assessments. Neurotoxicology and Teratology, 13(6), 599-609.
• Crosby, E. B., Bailey, J. M., Oliveri, A. N., & Levin, E. D. (2015). Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicology and Teratology, 49, 81-90.
• Del Razo, L. M., Garcia-Vargas, G. G., Garcia-Salcedo, J., Sanmiguel,
M. F., Rivera, M., Hernandez, M. C., & Cebrian, M. E. (2002). Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera, Mexico. Food and Chemical Toxicology, 40(10), 1423-1431.
• Eaton, D. L., & Gallagher, E. P. (2010). 1.01 –General overview of Toxicology. En Comprehensive Toxicology (vol. 1, pp. 1-46). US: Elsevier.
• Hoy, J. B., Cody, B. A., Karlix, J. L., Schmidt, C. J., Tebbett, I. R., Toffollo, S., … Wielbo, D. (1999). Pyridostigmine bromide alters locomotion and thigmotaxis of rats: Gender effects. Pharmacology, Biochemistry, and Behavior, 63(3), 401-406.
• Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: Zebrafish swim into view. Nature Reviews. Genetics, 8(5), 353-367.
• Liu, Z., Wang, Y., Zhu, Z., Yang, E., Feng, X., Fu, Z., & Jin, Y. (2016). Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere, 148, 163-170.
• LSRtrack (s. f.). PRICA_Analyze.zip [Carpetas con información]. Recuperado de https://drive.google.com/file/d0B3eZrxIrQPe5OFRpaGpzaUNabkk/view?usp=sharing
• Nagel, R. (2002). DarT: The embryo test with the Zebrafish Danio rerio--a general model in ecotoxicology and toxicology. ALTEX, 19(Suppl. 1), 38-48.
• Peterson, R. T., & MacRae, C. A. (2012). Systematic approaches to toxicology in the zebrafish. Annual Review of Pharmacology and Toxicology, 52, 433-453.
• Schnörr, S. J., Steenbergen, P. J., Richardson, M. K., & Champagne, D. L. (2012). Measuring thigmotaxis in larval zebrafish. Behavioural Brain Research, 228(2), 367-374.
• Steenbergen, P. J., Richardson, M. K., & Champagne, D. L. (2011). The use of the zebrafish model in stress research. Progress in Neuro-psychopharmacology & Biological Psychiatry, 35(6), 1432-1451.
• Stewart, A. M., Gaikwad, S., Kyzar, E., & Kalueff, A. V. (2012). Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Research, 1451, 44-52.
• Tolins, M., Ruchirawat, M., & Landrigan, P. (2014). The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Annals of Global Health, 80(4), 303-314.
• Tomizawa, M., & Casida, J. E. (2003). Selective toxicity of neonicotinoids
attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology, 48, 339-364.
• Wolansky, M. J., Gennings, C., DeVito, M. J., & Crofton, K. M. (2009). Evidence for dose-additive effects of pyrethroids on motor activity in rats. Environmental Health Perspectives, 117(10), 1563-1570.
• Zhou, Y., Cattley, R. T., Cario, C. L., Bai, Q., & Burton, E. A. (2014).
Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications. Nature Protocols, 9(7), 1533-1548.
Downloads
Published
How to Cite
License
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)