Análisis prospectivo del uso de energía solar: Caso Colombia
DOI:
https://doi.org/10.33064/iycuaa201771604Palabras clave:
recurso natural, estación de potencia, energía solar, dióxido de carbono, impacto, emisiones.Resumen
La preocupación por el aumento en las emisiones de gases efecto invernadero ha impulsado el abastecimiento energético a partir de fuentes como la energía solar. Sin embargo, la puesta en marcha de
una central solar genera impactos adversos sobre el ambiente. Este artículo, derivado de la investigación
sobre fuentes energéticas no convencionales, se centra en la identificación de los impactos en las fases de operación y puesta en marcha de centrales fotovoltaica y térmica y presenta además una prospectiva de las emisiones esperadas de CO2 si se opta por este energético en un país como Colombia. El análisis prospectivo se realizó con LEAP empleando los valores de emisiones de CO2 encontrados. En este estudio se evidencia que aunque existen impactos positivos, la presencia de impactos negativos exige la implementación de estrategias de mitigación ambiental de los daños causados. Se concluyó que es viable el uso de la energía solar.
Descargas
Métricas
Citas
Bastida, F., Moreno, J., Hernández, T., & García, C. (2006).
Microbiological activity in a soil 15 years after its devegetation.
Soil Biology and Biochemistry, 38(8), 2503-2507.
Benavides Ballesteros, H. O., & León Aristizabal, G. E. (2007).
Información técnica sobre gases de efecto invernadero
y cambio climático (Nota técnica de IDEAM. IDEAMMETEO/
-2007). Recuperado e 2 de febrero de 2015,
de http://www.ideam.gov.co/documents/21021/21138/
Gases+de+Efecto+Invernadero+y+el+Cambio+Climatico.
pdf/7fabbbd2-9300-4280-befe-c11cf15f06dd
Burkhardt III, J. J., Heath, G. A., & Turchi, C. S. (2011). Life cycle
assessment of a parabolic trough concentrating solar power
plant and the impacts of key design alternatives. Environmental
Science & Technology, 45(6), 2457-2464. Recuperado el 9 de
octubre de 2015, de http://pubs.acs.org/doi/pdf/10.1021/
es1033266
Burney, J., Woltering, L., Burke, M., Naylor, R., & Pasternak, D.
(2010). Solar-powedered drip irrigation enhances food security
in the Sudano-Sahel. Proceeding of the National Academy of
Sciences of United States of America, 107(5), 1848-1853.
Deluchi, M., & Jacobson, M. Z. (2011). Providing all global
energy with wind, water, and solar power, Part II: Reliability,
system and transmission costs, and policies. Energy Policy,
(3), 1170-1190.
Dubey, S., Jadhav, N., & Zahirova, B. (2013). Socio-Economic
and Environmental Impacts of Silicon Based Photovoltaic (PV)
Technologies. Energy Procedia, 33, 322-334. Recuperado el 25 de septiembre de 2015, de http://www.sciencedirect.
com.consultaremota.upb.edu.co/science/article/pii/
S1876610213000830
Fthenakis, V., & Chul Kim, H. (2009). Land use and electricity
generation: A life-cycle analysis. Renewable and Sustainable
Energy Reviews, 13(6-7), 1465-1474.
Fthenakis, V., Moskowitz, P., & Lee, J. (1984). Manufacture of
amorphous silicon and GaAs thin film solar cells: an identification
of potential health and safety hazards Solar Cells. Biomedical
and Environmental Assesment Division, 13(1), 43-58.
Gagnon, L., Bélanger, C., & Uchiyama, Y. (2002). Life-cycle
assessment of electricity generation options: The status of
research in year 2001. Energy Policy, 30(14), 1267-1278.
Grigoleit, T., & Lenkeit, D. (2012). The renewable energy
industry in Germany. A glance at industry promotion policies
in selected energy sectors. Energia Ambiente e Innovazione,
Recuperado el 10 de marzo de 2015, de http://www.gtai.
de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/
Articles/The-renewable-energy-industry-in-germany.pdf
Gutiérrez, C. (2001). Small hydro: Policy and potential in Spain.
Renewable Energy World, 4(5), 148-152.
Hernandez, R., Easter, S., Murphy Mariscal, M., Maestre, F.,
Tavassoli, M., Allen, E., … Michael, A. (2014). Environmental
impacts of utility-scale solar energy. Renewable and
Sustainable Energy Reviews, 29, 766-779.
Herrán, C. (2012). El cambio climático y sus consecuencias
para América Latina. México: Proyecto Energía y Clima
de la Fundación Friedrich Ebert (FES). Recuperado el 2 de
febrero de 2015, de http://library.fes.de/pdf-files/bueros/laenergiayclima/
Intergovernmental Panel on Climate Change. (2012). Special
Report on Renewable Enery Sources and Climate Change
Mitigation (SRREN). New York, US: Cambridge University Press.
__________ (2014). Cambio climático 2014: Impactos,
adaptación y vulnerabilidad-Resumen para responsables de
políticas. Recuperado el 12 de marzo de 2015, de https://www.
ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_es.pdf
International Energy Agency. (septiembre 2014). Publications.
Recuperado el 25 de noviembre de 2015, de http://www.iea.
org/publications/freepublications/publication/
Lauber, V., & Mez, L. (2004). Three decades of renewable
electricity policies in Germany. Energy & Environment, 15(4),
-623.
Marland, G., Boden, T., & Andres, R. J. (2013). Carbon Dioxide
Information Analysis Center CDIAC. Global, Regional, and National Fossil-Fuel CO2 Emissions. Tennessee, US: Oak Ridge
National Laboratory US Department of Energy.
Martinot, E. (2001). World bank energy projects in China:
Influences on environmental protection. Energy Policy, 29(8),
-594.
National Renewable Energy Laboratory. (2004). Renewable
Energy in China. Golden, CO: NREL. Recuperado el 15 de
marzo de 2015, de www.nrel.gov.
Naturalgas.org. (2013). Natural Gas and the Environment.
Recuperado el 15 de octubre de 2015, de http://naturalgas.
org/environment/naturalgas/
Nelson, J., Ghambir, A., & Ekins-Daukes, N. (2014). Solar power
for CO2 mitigation (Briefing paper 11). Imperial College.
London, UK: Grantham Institute for Climate Change.
Office of Indian Energy and Economic Development. (2015).
Tribal Energy and Environmental Information Clearinghouse.
Recuperado el 25 de noviembre de 2015, de http://teeic.
indianaffairs.gov/aboutus/index.htm
Pepper, I., Gerba, C., & Newby, D. (2009). Soil: a public health
threat or savior? Critical Reviews in Environmental Science and
Technology, 39(5), 416-432.
Ravi, S., D´Odorico, P., Brashear, D., Field, J., Goudie, A.,
Huxman, T., … Zobeck, T. (2011). Aeolian processes and the
biosphere. Review of Geophysics, 49(RG3001), 1-45.
Rodríguez-Sierra, M. L., & Serrano-Guzmán, M. F. (2015).
Emisiones del carbón por diferentes tecnologías, proyectadas
mediante el software LEAP al año 2050 [Entregable del Semillero
de Prospectiva Energética Colombia 2050]. Bucaramanga,
Santander, Colombia: ECOPETROL, S. A.-UIS-UNAB-UPB.
Sahu, B. K. (2015). A Study on global solar PV energy
developments and policies with special focus on the top
ten solar PV power producing countries. Renewable and
Sustainable Energy Reviews, 43, 621-634.
Sinha, P., Kriegner, C., Schew, W., Kaczmar, S., Traister, M., &
Wilson, D. (2008). Regulatory policy governing cadmiumtelluride
photovoltaics: A case study contrasting life cycle
management with the precautionary principle. Energy Policy,
(1), 381-387.
Sullivan, J. L., & Gaines, L. (2012). Status of life cycle inventories
for batteries. Energy Conversion and Management, 134-148.
doi: 10.1016/j.enconman.2012.01.001
Torresol Energy Investments (2010 a). Torresol Energy reinventing
solar power. Tecnología de captadores cilindro parabólicos.
Recuperado el 7 de octubre de 2015, de http://www.
torresolenergy.com/TORRESOL/tecnologia-colectores-cilindroparabolicos/
es
__________ (2010 b). Torresol Energy reinventing solar power.
Tecnología de torre central. Recuperado el 8 de octubre
de 2015, de http://www.torresolenergy.com/TORRESOL/
tecnologia-torre-central/es
Trieb, F., Schillings, C., Pregger, T., & O´Sullivan, M. (2012).
Solarelectricity imports from the Middle East and North Africa
to Europe. Energy Policy, 42(C), 341-353.
Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental
impacts from the solar energy technologies. Energy Policy,
(3), 289-296. Recuperado el 25 de septiembre de 2015, de
http://www.sciencedirect.com.consultaremota.upb.edu.co/
science/article/pii/S0301421503002416
Unidad de Planeación Minero-Energética. (2015). Plan
Energético Nacional Colombia: Ideario Energético 2050.
Bogotá, Colombia: Autor.
US Department of Energy. (2008). Solar power could provide
% of U.S. electricity by 2025. Mother Earth News. The Original
Guide to Live Wisely, 25 de junio de 2008 [Reimpresión de EERE
Network News, hoja informativa del Departamento de Energía
de EE. UU.] Recuperado de http://www.motherearthnews.
com/renewable-energy/solar-power/solar-power-potential
Yanrui, W. (2003). Deregulation and growth in China’s energy
sector: A review of recent development. Energy Policy, 31(13),
-1425.
Descargas
Publicado
Licencia
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)