Efecto del ácido salicílico y del etileno en la expresión de genes dehidrina y glioxalasas en Mammillaria bombycina

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2024934935

Palabras clave:

Fitohormonas, qPCR, estrés, cactáceas

Resumen

Las plantas al estar bajo estrés desarrollan sistemas de defensa, como la activación de rutas de señalización inducidas por ácido salicílico (AS) o etileno (ET). Mamillaria bombycina ha sido utilizada como planta modelo para estudios moleculares sobre diferentes tipos de estrés. Algunos genes expresados bajo estrés son las glioxalasas y las dehidrinas. En este trabajo se analizó la expresión del gen tipo dehidrina MabDHN y los genes glioxalasas MbGlyI-I, MbGlyII-I y MbGlyDJI, inducidos por 100 µM de AS y 2mM de ET por 3, 8 y 24 h. Con AS, la expresión de los genes disminuyó en todos los tiempos analizados. Con ET aumentó la expresión de MabDHN y MbGlyI-I solo a las 3 h; MbGlyII-I no mostró expresión y MbGlyDJI disminuyó su expresión desde las 8 h. Se comprobó la participación del AS y ET en la regulación de genes dehidrina y glioxalasa en M. bombycina.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Liliana Mercado-Díaz de León, Universidad Autónoma de Aguascalientes

Departamento de Química, Centro de Ciencias Básicas

Eugenio Martín Pérez-Molphe Balch , Universidad Autónoma de Aguascalientes

Departamento de Química, Centro de Ciencias Básicas

José Francisco Morales-Domínguez, Universidad Autónoma de Aguascalientes

Departamento de Química, Centro de Ciencias Básicas

Citas

• Antonić, D.D., Subotic, A.R., Dragicević, M.B., Pantelić, D., Milošević, S.M., Simonovic, A.D., & Momčilović, I. (2020). Effects of Exogenous Salicylic Acid on Drought Response and Characterization of Dehydrins in Impatiens walleriana. Plants, 9, 1589. doi.org/10.3390/plants911158

• Battaglia, M., Olvera, C.Y., Garciarrubio, A., Campos, F. & Covarrubias, A. A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant Physiology, 148(1), 6-24. doi.org/10.1104/pp.108.120725

• Bhojwani, S.S., & Dantu, P.K. (2013). Tissue Culture: An Introductory Text. Plant Science, USA. doi.org/10.1007/978-81-322-1026-9

• Cao, Y., Xiang, X., Geng, M., You, Q., & Huang, X. (2017). Effect of HbDHN1 and HbDHN2 Genes on Abiotic Stress Responses in Arabidopsis. Frontiers in Plant Science, 8, 470. doi.org/10.3389/fpls.2017.00470

• Enríquez-González, C., Garcidueñas-Piña, C., Castellanos-Hernández, O.A., Enríquez-Aranda, S., Loera-Muro, A., Ocampo, G., Pérez-Molphe Balch, E., & Morales-Domínguez, J.F. (2022). De Novo Transcriptome of Mammillaria bombycina (Cactaceae) under In vitro Conditions and Identification of Glyoxalase Genes. Plants (Basel), 11(3), 399. doi.org/10.3390/plants11030399

• Ghosh A., Kushwaha H. R., Hasan M. R., Pareek A., Sopory S. K., & Singla-Pareek S. L. (2016). Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Scientific Reports, 6(1), 18358

• Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance Versatile proteins for complex mechanisms. Plant Signaling & Behavior, 6(10), 1503-1509. doi: 10.4161/psb.6.10.17088

• Hao, Y., Hao, M., Cui, Y., Kong, L., & Wang, H. (2022). Genome wide survey of the dehydrin genes in bread wheat (Triticum aestivum L.) and its relatives: identification, evolution and expression profiling under various abiotic stresses. BMC Genomics, 23(1), 73. doi: 10.1186/s12864-022-08317-x

• Hernández-Camacho, S. (2016). Aislamiento y caracterización de un gen tipo dehidrina en cactáceas y estudio de su expresión en Mammillaria bombycina. Tesis de Doctorado. Universidad Autónoma de Aguascalientes. México.

• Hernández-Camacho, S., Pérez-Molphe Balch, E., Alpuche-Solís, A.G., & Morales-Domínguez, J.F. (2017). Identification and evolutionary relationships of partial gene sequences from dehydrin group in three species of cacti. Journal of experimental botany, 86, 151- 162. doi:10.32604/phyton.2017.86.151

• Kaya, C., Ashraf, M., Alyemeni, M.N., Corpas, F.J., & Ahmad, P. (2020). Salicylic acidinduced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials, 399, 123020. doi:10.1016/j.jhazmat.2020.123020

• Khan, M.I.R., Jahan, B., AlAjmi, M.F., Rehman, M.T., & Khan, N.A. (2020). Ethephon mitigates nickel stress by modulating antioxidant system, glyoxalase system and proline metabolism in Indian mustard. Physiology Molecular Biology Plants, 26(6), 1201-1213. doi:10.1007/s12298-020-00806-1

• Khan, M.I.R., Jahan, B., AlAjmi, M.F., Rehman, M.T., Iqbal, N., Irfan, M., Sehar, Z., & Khan, N.A. (2021). Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2021.112535

• Lee, H.Y., Chen, Y., Kieber, J.J., & Yoon, G.M. (2017). Regulation of the turnover of ACC Synthases by phytohormones and heterodimerization in Arabidopsis. The plant journal, 1-45. doi:10.1111/tpj.13585

• Liu, Y., Liang, J., Sun, L., Yang, X., & Li, D. (2016). Group 3 LEA Protein, ZmLEA3, Is Involved in Protection from Low Temperature Stress. Frontiers in Plant Science, 7, 101. doi:10.3389/fpls.2016.01011

• Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

• Manzo-Rodríguez, S.M. (2010). Propagación in vitro de Mammillaria coahuilensis var. coahuilensis (Broedeker) Moran y Echinocactus platyacanthus Link & Otto a partir de semilla para su conservación. Tesis de maestría. Institución de Enseñanza e Investigación de Ciencias Agrícolas. México.

• Meza-Rangel, E., Tafoya, F., Lindig-Cisneros, R., Sigala-Rodríguez, J.J., y Pérez-Molphe-Balch, E. (2014). Distribución actual y potencial de las cactáceas Ferocactus histrix, Mammillaria bombycina y M.perezdelarosae en el estado de Aguascalientes, México. Acta Botánica Mexicana, 108, 67.

• Mostofa, M.G., Rahman, M.M., Siddiqui, M.N., Fujita, M., & Tran, L.S.P. (2020). Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. Journal of Hazard. Materials, 394,122572. doi:10.1016/j.jhazmat.2020.122572

• Mota, A.P.Z., Oliveira, T.N., Vinson, C.C., Williams, T.C.R., Costa, M.M.D.C., Araujo, A.C.G., Danchin, E.G.J., Grossi-de-Sá, M.F., Guimaraes, P.M., & Brasileiro, A.C.M. (2019). Contrasting Effects of Wild Arachis Dehydrin Under Abiotic and Biotic Stresses. Frontiers Plant Science, 10, 497. doi:10.3389/fpls.2019.00497

• Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15, 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x

• Ochoa-Alfaro, A.E., Rodriguez-Kessler, M., Pérez-Morales, M.B., Delgado-Sánchez, P., Cuevas-Velazquez, C.L., Gómez-Anduro, G., & Jiménez-Bremont, J.F. (2012). Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Plants, 235(3), 565-578. doi:10.1007/s00425-011-1531-8

• Retes-Pruneda, J.L., Valadez-Aguilar, M.L., Pérez-Reyes, M.E. y Pérez-Molphe-Balch, E. (2007). Propagación in vitro de especies de Echinocereus, Escontria, Mammillaria, Melocactus y Polaskia (cactaceae). Boletín de la Sociedad Botánica de México, 81, 9-16. doi:10.17129/botsci.1761

• Richard, S., Morency, MJ, & Drevet, (2000). Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Molecular Biology, 43, 1-10. doi:10.1023/A:1006453811911

• Salazar-Retana, A.L., Maruri-López, I., Hernández-Sánchez, I.E., Becerra-Flora, A., Guerrero-González, M.L., & Jiménez-Bremont, J.F. (2019). PEST sequences from a cactus dehydrin regulate its proteolytic degradation. PeerJ, 14(7), 6810. doi:10.7717/peerj.6810

• Sangha J.S., Chen Y.H., Kaur J., Khan W., Abduljaleel Z., Alanazi M.S., Mills A., Adalla C.B., Bennett J., Prithiviraj B., Jahn G.C. & Leung H. (2013). Proteome Analysis of Rice (Oryza sativa L.) Mutants Reveals Differentially Induced Proteins during Brown Planthopper (Nilaparvata lugens) Infestation. Int J Mol Sci, 15;14(2), 3921-45. doi:10.3390/ijms14023921

• Sankaranarayanan, S., Jamshed, M., Kumar, A., Skori, L., Scandola, S., Wang, T., Spiegel, D., & Samuel, M.A. (2017). Glyoxalase Goes Green: The Expanding Roles of Glyoxalase in Plants. International Journal of Molecular Sciences, 18(4), 898. doi: 10.3390/ijms18040898

• Shen, Y., Tang, M.J., Hu, Y.L., & Lin, Z.P. (2004). Isolation and characterization of a dehydrin-like gene from drought tolerant Boea crassifolia. Plant Science, 166(5), 1167-1175. doi:10.1016/j.plantsci.2003.12.025

• Subedi, K.P., Choi, D., Kim, I., Min, B., & Park, C. (2011). Hsp31 of Escherichia coli K-12 is glyoxalase III. Molecular Microbiology, 81(4), 926–936. doi: 10.1111/j.1365-2958.2011.07736.x

• Yang, Y., He, M., Zhu, Z., Li, S., Xu, Y., & Zhang, C. (2012). Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biology, 12, 140. doi:10.1186/1471-2229-12-140

• Zheng, Y., Wang, X., Cui, X., Wang, K., Wang, Y., & He, Y. (2023). Phytohormones regulate the abiotic stress: An overview of physiological, biochemical, and molecular responses in horticultural crops. Frontiers in Plant Science, 6(13), 1095363. doi:10.3389/fpls.2022.1095363

Publicado

2024-09-30

Número

Sección

Artículos de Investigación

Categorías