Efectos ambientales en el aire, agua y suelo de los residuos sólidos urbanos de un relleno sanitario del Estado de México

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2024914520

Palabras clave:

efectos ambientales, residuos sólidos urbanos, aire, agua, suelo, relleno sanitario

Resumen

En México, la mayoría de los municipios depositan sus residuos sólidos urbanos (RSU) en sitios no controlados o rellenos sanitarios (RS); por lo tanto, existe la necesidad de mejorar sus condiciones y conocer el impacto existente en el aire, agua y suelo. Se realizó la caracterización elemental del lixiviado, suelo y agua. Además, se caracterizó fisicoquímica y microbiológicamente una muestra de agua de pozo cercana al RS (1.5 km) y del lixiviado. Se analizó la calidad del aire y las condiciones del clima. Los lixiviados presentan una alta carga orgánica, materia nitrogenada y cloruros, y un bajo índice de biodegradabilidad DBO/DQO de 0.18. La concentración de los contaminantes del aire se encuentra dentro de los límites permisibles debido a que es una zona abierta y la velocidad del viento favorece la dispersión de estos. Los metales provenientes de los lixiviados son retenidos en el suelo evitando su migración ...

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Alma Regina Dávila-Samano, Universidad Autónoma del Estado de México

Facultad de Química

Luis Antonio Castillo-Suárez, Universidad Autónoma del Estado de México

Instituto Interamericano de Tecnología y Ciencias del Agua

Ivonne Linares-Hernández, Universidad Autónoma del Estado de México

Instituto Interamericano de Tecnología y Ciencias del Agua

Miriam Aidé García-Colindres, Universidad Autónoma del Estado de México

Facultad de Química

Verónica Martínez-Miranda, Universidad Autónoma del Estado de México

Instituto Interamericano de Tecnología y Ciencias del Agua

Citas

• 2008/50/EC. (2008). DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. Retrieved from https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex%3A32008L0050

• Ali, S. A., & Ahmad, A. (2020). Suitability analysis for municipal landfill site selection using fuzzy analytic hierarchy process and geospatial technique. Environmental Earth Sciences, 79(10), 227. https://doi.org/10.1007/s12665-020-08970-z

• Araiza Aguilar, J. A., Nájera Aguilar, H. A., Gutiérrez Hernandez, R. F., & Rojas Valencia, M. N. (2018). Emplacement of solid waste management infrastructure for the Frailesca Region, Chiapas, México, using GIS tools. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 391–399. https://doi.org/10.1016/j.ejrs.2018.01.004

• Ayeleru, O. O., Okonta, F. N., & Ntuli, F. (2021). Cost benefit analysis of a municipal solid waste recycling facility in Soweto, South Africa. Waste Management, 134(May 2020), 263–269. https://doi.org/10.1016/j.wasman.2021.08.001

• Batista, M., Goyannes Gusmão Caiado, R., Gonçalves Quelhas, O. L., Brito Alves Lima, G., Leal Filho, W., & Rocha Yparraguirre, I. T. (2021). A framework for sustainable and integrated municipal solid waste management: Barriers and critical factors to developing countries. Journal of Cleaner Production, 312, 127516. https://doi.org/10.1016/j.jclepro.2021.127516

• Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., … Di Carlo, P. (2017). Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmospheric Pollution Research, 8(4), 652–659. https://doi.org/10.1016/j.apr.2016.12.014

• Chabuk, A. J., Al-Ansari, N., Hussain, H. M., Knutsson, S., & Pusch, R. (2017). GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environmental Earth Sciences, 76(5), 209. https://doi.org/10.1007/s12665-017-6524-x

• Deus, R. M., Mele, F. D., Bezerra, B. S., & Battistelle, R. A. G. (2020). A municipal solid waste indicator for environmental impact: Assessment and identification of best management practices. Journal of Cleaner Production, 242, 118433. https://doi.org/10.1016/j.jclepro.2019.118433

• DOF. NOM-025-SSA1-2014. , DOF § (2014).

• Donevska, K., Jovanovski, J., & Gligorova, L. (2021). Comprehensive Review of the Landfill Site Selection Methodologies and Criteria. Journal of the Indian Institute of Science, 101(4), 509–521. https://doi.org/10.1007/s41745-021-00228-2

• INEGI. (2020). INEGI.

• Ingle, G. S. (2022). Study of soil properties affected by leachate – A case study at Urali-Devachi, Pune, India. Materials Today: Proceedings, 60, 588–594. https://doi.org/10.1016/j.matpr.2022.02.118

• Instituto Nacional Estadística y Geografía (INEGI). (2020). Geografía y Medio Ambiente. Retrieved November 15, 2023, from https://www.inegi.org.mx/temas/climatologia/

• Istrate, I.-R., Iribarren, D., Gálvez-Martos, J.-L., & Dufour, J. (2020). Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, 157, 104778. https://doi.org/10.1016/j.resconrec.2020.104778

• Lin, K., Zhao, Y., Kuo, J.-H., Deng, H., Cui, F., Zhang, Z., … Wang, T. (2022). Toward smarter management and recovery of municipal solid waste: A critical review on deep learning approaches. Journal of Cleaner Production, 346, 130943. https://doi.org/10.1016/j.jclepro.2022.130943

• Ma, S., Zhou, C., Pan, J., Yang, G., Sun, C., Liu, Y., … Zhao, Z. (2022). Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. Journal of Cleaner Production, 333, 130234. https://doi.org/10.1016/j.jclepro.2021.130234

• Ma, Z., Liu, R., Liu, Y., & Bi, J. (2019). Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: a satellite-based perspective. Atmospheric Chemistry and Physics, 19(10), 6861–6877. https://doi.org/10.5194/acp-19-6861-2019

• Maldonado, J., Rodríguez-Chona, J., & Cajiao, A. (2017). Treatment landfill leachate in filters anaerobic upflow of two phases (DI – FAFS). Revista Ingeniería UC, 24(1), 91–104. Retrieved from https://www.redalyc.org/articulo.oa?id=70750544011

• Masseran, N., & Safari, M. A. M. (2020). Modeling the transition behaviors of PM10 pollution index. Environmental Monitoring and Assessment, 192(7), 441. https://doi.org/10.1007/s10661-020-08376-1

• NOM-020-SSA1-2014. (2014). NORMA Oficial Mexicana NOM-020-SSA1-2014, Salud ambiental. Valor límite permisible para la concentración de ozono (O3) en el aire ambiente y criterios para su evaluación. Retrieved June 27, 2023, from Diario Oficial de la Federación website: https://www.dof.gob.mx/nota_detalle.php?codigo=5356801&fecha=19/08/2014#gsc.tab=0

• NOM-127-SSA1. (2021). Modificacion a la Norma Oficial Mexicana NOM-127-SSA1-2021, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Diario Oficial de La Federación, 1–7.

• Parvin, F., & Tareq, S. M. (2021). Impact of landfill leachate contamination on surface and groundwater of Bangladesh: a systematic review and possible public health risks assessment. Applied Water Science, 11(6), 100. https://doi.org/10.1007/s13201-021-01431-3

• Peixoto, F. da S. (2020). Groundwater contamination risk in urban watershed. Mercator, 19(6), 1–17. https://doi.org/10.4215/rm2020.e19013

• Przydatek, G., & Kanownik, W. (2019). Impact of small municipal solid waste landfill on groundwater quality. Environmental Monitoring and Assessment, 191(3), 169. https://doi.org/10.1007/s10661-019-7279-5

• Punsompong, P., & Chantara, S. (2018). Identification of potential sources of PM10 pollution from biomass burning in northern Thailand using statistical analysis of trajectories. Atmospheric Pollution Research, 9(6), 1038–1051. https://doi.org/10.1016/j.apr.2018.04.003

• Raherison Semjen, C. (2020). Contaminación atmosférica y medioambiental y patología respiratoria. EMC - Tratado de Medicina, 24(3), 1–9. https://doi.org/10.1016/S1636-5410(20)44024-3

• Ren, Y., Zhang, H., Wei, W., Cai, X., Song, Y., & Kang, L. (2019). A study on atmospheric turbulence structure and intermittency during heavy haze pollution in the Beijing area. Science China Earth Sciences, 62(12), 2058–2068. https://doi.org/10.1007/s11430-019-9451-0

• Reyna-Bensusan, N., Wilson, D. C., & Smith, S. R. (2018). Uncontrolled burning of solid waste by households in Mexico is a significant contributor to climate change in the country. Environmental Research, 163, 280–288. https://doi.org/10.1016/j.envres.2018.01.042

• Rezaeisabzevar, Y., Bazargan, A., & Zohourian, B. (2020). Landfill site selection using multi criteria decision making: Influential factors for comparing locations. Journal of Environmental Sciences, 93, 170–184. https://doi.org/10.1016/j.jes.2020.02.030

• Rodrigo-Ilarri, J., Rodrigo-Clavero, M.-E., & Cassiraga, E. (2020). BIOLEACH: A New Decision Support Model for the Real-Time Management of Municipal Solid Waste Bioreactor Landfills. International Journal of Environmental Research and Public Health, 17(5), 1675. https://doi.org/10.3390/ijerph17051675

• Rodríguez, O., & Al, E. (2020). Remoción de cobre de aguas contaminadas empleando ramnolípidos. Revista Cubana Química, 32(3), 511–526. Retrieved from http://www.redalyc.org/articulo.oa?id=443565548010

• Secretaria de Salud. Agua para uso y consumo humano. Límites permisibles de la calidad del agua. , Proyecto de Norma Oficial Mexicana PROY-NOM-127-SSA1-2017. § (2021).

• SEDESOL. (2016). Cédulas de Información Municipal. Municipio: San Antonio la Isla. Retrieved November 15, 2023, from http://www.microrregiones.gob.mx/zap/datGenerales.aspx?entra=nacion&ent=15&mun=073

• SEMARNAT, S. de M. A. y R. N. (1998). NOM-001-SEMARNAT-1996 Límites Máximos Permisibles De Contaminantes En Las Descargas De Aguas Residuales En Aguas Y Bienes Nacionales. Norma Oficial Mexicana, 33. Retrieved from https://dof.gob.mx/nota_detalle.php?codigo=4863829&fecha=06/01/1997#gsc.tab=0

• Sun, L., Fujii, M., Tasaki, T., Dong, H., & Ohnishi, S. (2018). Improving waste to energy rate by promoting an integrated municipal solid-waste management system. Resources, Conservation and Recycling, 136, 289–296. https://doi.org/10.1016/j.resconrec.2018.05.005

• Tavella, R. A., Fernandes, C. L. F., Penteado, J. O., De Lima Brum, R., Florencio Ramires, P., Coutelle Honscha, L., … Da Silva Júnior, F. M. R. (2022). Unexpected reduction in ozone levels in a mid-size city during COVID-19 lockdown. International Journal of Environmental Health Research, 32(8), 1801–1814. https://doi.org/10.1080/09603123.2021.1917526

• Tejera, J., Hermosilla, D., Gascó, A., Miranda, R., Alonso, V., Negro, C., & Blanco, Á. (2021). Treatment of mature landfill leachate by electrocoagulation followed by Fenton or UVA-LED photo-Fenton processes. Journal of the Taiwan Institute of Chemical Engineers, 119, 33–44. https://doi.org/10.1016/j.jtice.2021.02.018

• Upadhyay, A., Singh, R., Talwar, P., Verma, N., Ahire, P. D., Khatri, H., … Vivekanand, V. (2023). Insights into sustainable resource and energy recovery from leachate towards emission mitigation for environmental management: A critical approach. Journal of Environmental Management, 343, 118219. https://doi.org/10.1016/j.jenvman.2023.118219

• Wijekoon, P., Koliyabandara, P. A., Cooray, A. T., Lam, S. S., Athapattu, B. C. L., & Vithanage, M. (2022). Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, 421(February 2021), 126627. https://doi.org/10.1016/j.jhazmat.2021.126627

• Yu, L., Zhou, H., Sun, J., Qin, F., Yu, F., Bao, J., … Ren, Z. (2017). Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy & Environmental Science, 10(8), 1820–1827. https://doi.org/10.1039/C7EE01571B

• Legislación

• NOM-001-ECOL-1996, DOF: 06/01/1997. límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales (DOF, 1997).

• NOM-020-SSA1-2014. (2014). NORMA Oficial Mexicana NOM-020-SSA1-2014, Salud ambiental. Valor límite permisible para la concentración de ozono (O3) en el aire ambiente y criterios para su evaluación. Diario Oficial de La Federación, 9.

• NOM-025-SSA1-2014. (2014). NORMA Oficial Mexicana NOM-025-SSA1-2014, Salud ambiental. Valores límite permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación.

• Sitios, páginas electrónicas

• INEGI. (2020). INEGI. INEGI. https://inegi.org.mx/app/buscador/default.html?q=Habitantes+en+Estado+de+México

Publicado

2024-01-31

Número

Sección

Artículos de Investigación

Categorías