La adherencia en el concreto reforzado: breve revisión histórica de la investigación del fenómeno

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2013584005

Palabras clave:

adherencia acero-concreto, concreto reforzado, análisis histórico, experimentación, modelación numérica, reglamentación

Resumen

La interacción acero-concreto (o “adherencia”) es un fenómeno de vital importancia para las estructuras de concreto reforzado, al ser clave en la transferencia de esfuerzos entre las varillas de acero y el concreto circundante. La comprensión de dicho fenómeno ha sido objeto de arduas investigaciones llevadas a cabo desde los albores de la construcción y un sinnúmero de éstas se han realizado para incluir su influencia en el análisis, diseño y reglamentación de estructuras de concreto reforzado. En este trabajo se hace una revisión cronológica de dichas investigaciones, iniciando con la invención del concreto en la época romana, pasando por la incorporación del acero de refuerzo en su composición en el Siglo XIX, y continuando con los principales trabajos de investigación experimental y numéricos desarrollados en el Siglo XX.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Norberto Domínguez Ramírez, Instituto Politécnico Nacional

Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Arquitectura Unidad Zacatenco.

Citas

• APPL, J. J., ELIGEHAUSEN, R., OZBOLT, J., Numerical analysis of splices with headed deformed reinforcing bars. “Bond in concrete”: Proceedings of the Conference held at the Budapest University of Technology and Economics; Balazs et al. (Eds.)., pp. 463-468, 2002.

• ASSA, B., DHANASEKAR, M., A numerical model for flexural analysis of short reinforced masonry columns including bond-slip. Computer and Structures, 80, 547-558, 2002.

• AYOUB, A., FILIPPOU, F. C., Mixed formulation of bondslip problems under cyclic loads. ASCE - Journal of Structural Engineering, 125(6): 661-671, 1999.

• BAMONTE, P., CORONELLI, D., GAMBAROVA, P. G., Size effects in high-bond bars. “Bond in concrete”: Proceedings of the Conference held at the Budapest University of Technology and Economics, Balazs et al. (Eds.), 43-52, 2002.

• BRESLER B., BERTERO, V. V., Behavior of reinforced concrete under repeated load. ASCE – Journal of Structural Division, 94(ST6): 1567-1590, 1968.

• CEB-FIP MODEL CODE CEB-FIP Model Code 1990. Design Code. Comité Euro-International du Béton et Fédération Internationale de la Précontrainte; Thomas Telford, London, 437 (ISBN 0 7277 1696 4), 1993.

• CLEMENT, J. L., Interface acier – béton et comportement des structures en béton armé: caractérisation - modélisation; Thèse de l’Université Paris VI, 1987.

• CORONELLI, D., GAMBAROVA, P. G., RAVAZZANI, P., Size effect in steel-concrete bond: test results and modelling for smooth bars. Fracture Mechanics of Concrete Structures (Framcos), de Borst et al (Eds.)., pp. 669-676, 2001.

• COX J. V., HERRMANN, L. R., Development of a plasticity bond model for steel reinforcement. Mechanics of Cohesive-Frictional Materials, 3, 155-180, 1998.

• COX, J. V., HERRMANN, L. R., Validation of a plasticity bond model for steel reinforcement. Mechanics of Cohesive-Frictional Materials, 4, 361-389, 1999.

• D’AMBRISI, A., FILIPPOU, F. C., Modeling of cyclic shear behaviour in RC members. ASCE - Journal of Structural Engineering, 125(10): 1143-1150, 1999.

• DELHUMEAU, G., L’invention du béton armé. Hennebique 1890-1914. France: Editions Norma,1999.

• DESIR, J. M., ROMDHANE, M. R. B., ULM, F. J., FAIRBAIRN, E. M. R., Steel-concrete interface: revisiting constitutive and numerical modeling. Computers and Structures, 71, 489-503, 1999.

• DOMÍNGUEZ, N., Etude de la liaison acier-béton: de la modélisation du phénomène à la formulation d’un Elément Fini Enrichi « béton armé ». Thèse de l’ENS de Cachan, 2005.

• DOMÍNGUEZ, N., BRANCHERIE, D., DAVENNE, L., IBRAHIMBEGOVIC, A., Prediction of crack pattern distribution in reinforced concrete by coupling a strong discontinuity model of concrete cracking and a bond-slip of reinforcement model. Engineering Computations,

, (5-6): 558-582, 2005.

• DOMÍNGUEZ, N., FERNÁNDEZ, M. A., IBRAHIMBEGOVIC, A., Enhanced solid element for modelling of reinforced concrete structures with bond-slip. Computers and Concrete, 7(4): 347-364, 2010.

• DOMÍINGUEZ, N., IBRAHIMBEGOVIC, A., A non-linear thermodynamical model for steel-concrete bonding. Computers and Structures, 106-107, 29-45, 2012.

• ELIGEHAUSEN, R., POPOV, E. P. BERTERO, V. V., Local bond stress-slip relationships of deformed bars under generalized excitations. University of California; Report no. UCB/EERC-83/23 of the National Science Foundation, 1983.

• FANTILLI, A. P., VALLINI, P., Bond-slip and concrete fracture in RC members subjected to cyclic actions. “Bond in concrete”: Proceedings of the Conference held at the Budapest University of Technology and Economics; Balazs et al. (Eds.)., pp. 61-78, 2002.

• GAMBAROVA, P. G., ROSATI, G. P., Bond and splitting in bar pull-out: behavioural laws and concrete cover role. Magazine of Concrete Research, 49(179): 99-110, 1997.

• GASTEBLED, O. J., MAY, I. M., Numerical simulation of pulled specimens. ACI Structural Journal, 97(2): 308-315, 2000.

• GEBBEKEN, N., GREULICH, S., Bond modelling for reinforced concrete under high dynamic loading effects. “Bond in concrete”: Proceedings of the Conference held at the Budapest University of Technology and Economics; Balazs et al. (Eds.)., pp. 529-536, 2002.

• GHANDEHARI, M., KRISHNASWAMY, S., SHAH, S., Bondinduced longitudinal fracture in reinforced concrete. ASME - Journal of Applied Mechanics, 67, 740-748, 2000.

• GOTO, Y., Cracks formed in concrete around tension bars. ACI Journal, 68(4): 244-251, 1971.

• HARAJLI, M. H., Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete. ACI Structural Journal, 91(5): 511-520, 1994.

• KHALFALLAH, S., Bond-slip analysis of reinforced concrete members. Revue Française de Génie Civil, 9(4): 509-521, 2005.

• KOCH, R. G., BALAZS, G. L., Limit states for long term and cyclic loading. “Bond in concrete”: Proceedings of the Conference held at the Budapest University of Technology and Economics; Balazs et al. (Eds.)., 211-220, 2002.

• LA BORDERIE, C., PIJAUDIER-CABOT, G., Etude expérimentale du comportement des matériaux renforcés. Rapport intermédiaire: Détermination expérimentale des lois de comportement de l’interface fibre-matrice; Rapport LMT Cachan; Contrat I70/1F 3146 avec Electricité de France, 1987.

• LACKNER, R., MANG, H. A., Adaptive FE analysis of RC shells. II: applications. ASCE - Journal of Engineering Mechanics, 127(12): 1213-1222, 2001.

• LACKNER, R., MANG, H. A., Scale transition in steel-concrete interaction. I: Model. ASCE - Journal of Engineering Mechanics, 129(4): 393-402, 2003.

• LACKNER, R., MANG, H. A., Scale transition in steelconcrete interaction. II: Applications. ASCE - Journal of Engineering Mechanics, 129(4): 403-413, 2003.

• LOWES, L. N., Finite element modeling of reinforced concrete beam-column bridge connections. Ph. D. Thesis, Civil Engineering Graduated Division, University of California, Berkeley, USA, 1999.

• LUNDGREN, K., Three-dimensional modelling of bond in reinforced concrete: Theoretical model, experiments and applications. Ph. D. Thesis, Division of Concrete Structures, Department of Structural Engineering, Chalmers University of Technology, Göteborg, Sweden, 1999.

• LUNDGREN, K., Pull-out tests of steel-encased specimens subjected to reversed cyclic loading. Materials and Structures, 33, 450-456, 2000.

• LUTZ, L. A., GERGELY, P., Mechanics of bond and slip of deformed bars in concrete. ACI Structural Journal, 64(11): 711-721, 1967.

• LUTZ, L. A., GERGELY, P., WINTER, G., The mechanics of bond and slip of deformed reinforcing bars in concrete. Cornell University; Structural Engineering Report No. 324, 1966.

• MAKER, B. N., LAURSEN, T. A., A finite element formulation for rod/continuum interactions: the one-dimensional slideline. International Journal for Numerical Methods in Engineering, 37, 1-18, 1994.

• MIRZA, S. M., HOUDE, J., Study of bond stress-slip relationships in reinforced concrete. ACI Structural Journal, 76(1): 19-45, 1979.

• MONTI, G., FILIPPOU, F. C., SPACONE, E., Analysis of hysteretic behaviour of anchored reinforcing bars. ACI Structural Journal, 94(2): 248-261, 1997.

• NOWAK, A. S., CHO, T., Reliability models for bond resistance and corrosion in concrete bridges. “Bond in concrete”: Proceedings of the Conference held at the Budapest University of Technology and Economics; Balazs et al. (Eds.)., pp. 137-144, 2002.

• OUGLOVA, A., Analyse du comportement des structures en béton armé atteintes de corrosion des armatures. Thèse de Doctorat de l’ENS Cachan, 2004.

• OZBOLT, J., LETTOW, S., KOZAR, I., Discrete bond element for 3D finite element analysis of reinforced concrete structures. “Bond in concrete”: Proceedings of the Conference held at the Budapest University of Technology and Economics; Balazs et al. (Eds.), 9-19, 2002.

• RAGUENEAU, F., DOMÍINGUEZ, N., IBRAHIMBEGOVIC, A., Thermodynamic-based interface model for cohesive brittle materials: application to bond-slip in RC structures. Computer Methods in Applied Mechanics and Engineering, 195(issue 52): 7249-7263, 2006.

Descargas

Publicado

2013-08-30

Número

Sección

Revisiones Científicas

Categorías