Bacteriocinas: características y aplicación en alimentos

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2013593988

Palabras clave:

Bioconservante, BAL, modo de acción, antagonismo, GRAS, aplicaciones en alimentos

Resumen

Las bacteriocinas representan un sustituto potencial de conservantes químicos, debido a que son producidas por bacterias ácido lácticas (BAL), las cuales son consideradas GRAS (generalmente reconocidas como seguras, por sus siglas en inglés), que tienen un papel importante en la preservación y fermentación de alimentos. El uso de las bacteriocinas como bioconservantes se atribuye
a sus características como inhibir numerosos microorganismos patógenos, su acción en amplios rangos de pHs y termoestabilidad, proponiéndose diferentes aplicaciones de las bacteriocinas en alimentos, ya sea en forma concentrada, en algún sustrato de grado alimentario o agregando la bacteriocina a un soporte, actuando éste como reservorio y difusor del péptido antimicrobiano concentrado a la comida. El propósito de este trabajo es el conocimiento general sobre bacteriocinas, y resaltar su uso potencial como bioconservante en alimentos.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Guadalupe Mondragón Preciado, Universidad Autónoma de Coahuila

Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas

Pilar Escalante Minakata, Universidad de Colima

Laboratorio Bioingeniería Ambiental, Facultad de Ingeniería Civil

Juan Alberto Osuna Castro, Universidad de Colima

Facultad de Ciencias Biológicas y Agropecuarias

Vrani Ibarra Junquera, Universidad de Colima

Facultad de Ciencias Químicas

Jesús Antonio Morlett Chávez, Universidad Autónoma de Coahuila

Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas

Raúl Rodríguez Herrera, Universidad Autónoma de Coahuila

Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas

Citas

• Aasen, I. M.; Moretro, T.; Katia, T.; Axelsson, L., Influence of complex nutrients, temperature and pH on bacteriocins production by Lactobacillus sakei CCUG 42687. Applied Microbiology and Biotechnology, 53: 159-166, 2000.

• Abee, T., Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiology Letters, 129: 1-10, 1995.

• Abriouel, H.; Franz, C. M. A. P.; Omar, N. B.; Gálvez A., Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35: 201-232, 2011.

• Bizani, D.; Motta, A.; Morrissy, A.; Terra, R.; Souto, A.; Brandelli, A., Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. International Microbiology, 8: 125-131, 2005.

• Chen, H.; Hoover, D. G., Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2: 82-100, 2003.

• Cintas, L. M.; Casaus, M. P.; Herranz, C.; Nes, I. F.; Hernández, P. E., Review: Bacteriocins of Lactic Acid Bacteria. Food Science and Technology International, 74: 281- 305, 2001.

• Daview, E. A.; Bevis, H. E.; Delves-Broughton, J., The use of the bacteriocin, nisin, as a preservative in ricottatype cheeses to control the food-borne pathogen Listeria monocytogenes. Letters Applied Microbiology, 24: 343-346, 1997.

• Daw, M. A.; Falkiner, F. R., Bacteriocins: nature, function and structure. Micron Journal, 27: 467-479, 1996.

• Deegan, L. H.; Cotter, P. D.; Hill, C.; Ross, P., Bacteriocins: Biological tools for biopreservation and shelf-life extension. International Dairy Journal, 16: 1058-1071, 2006.

• Delves-Broughton, J., Nisin and its use as a food preservative. Food Technology, 44: 110-117, 1991.

• Ennahar, S.; Sashihara, T.; Sonomoto K.; Ishizaki, A., Class IIa bacteriocins: biosynthesis, structure and activity, FEMS Microbiology Reviews, 24: 85-106, 2000.

• Ercolini, D.; Ferrocino, I.; La Storia, A.; Mauriello, G.; Gigli, S.; Masi, P.; Villani, F., Development of spoilage microbiota in beef stored in nisin activated packaging. Food Microbiology, 27: 137-143, 2010.

• Ercolini, D.; Storia, A.; Villani, F.; Mauriello, G., Effect of a bacteriocin activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. Journal of Applied Microbiology, 100: 765-772, 2006.

• Gao, Y.; Jia, S.; Gao, Q. Y.; Tan, Z., A novel bacteriocin with a broad inhibitory spectrum produced by Lactobacillus sake C2, isolated from traditional Chinese fermented cabbage. Journal Food Control, 21: 76-81, 2010.

• González-Martínez, B.E.; Gómez-Treviño, M.; Jiménez-Salas, Z., Bacteriocinas de probióticos. Revista Salud Pública y Nutrición, 4(2), 2003.

• Grande, M.; Lucas, R.; Abriouel, H.; Ben-Omar, N.; Maqueda, M.; Martínez-Bueno, M.; MartínezCañamero, M.; Valdivia, E.; Galvez, A., Control of Alicyclobacillus acidoterrestrisin fruit juices by enterocin AS-48. International Journal of Foof Microbiology, 104: 289-297, 2005.

• Grande, M. J.; Lucas, R.; Abriouel, H.; Valdivia, E.; Omar, N. B.; Maqueda, M.; Martínez-Bueno, M.; Martínez-Cañamero, M.; Gálvez, A., Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. International Journal of Food Microbiology, 106: 185-194, 2006.

• Kemperman, R.; Kuipers, A.; Karsens, H.; Nauta, A.; Kuipers, O.; Kok, J., Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied Environmental Microbiology, 69: 1589-1597, 2003.

• Lade, H. S.; Chitanand, M. P.; Gyananath, G.; Kadam, T.A., Studies on some properties of bacteriocins produced by Lactobacillus species isolated from agrobased waste. The Internet Journal Microbiology, 2(1), 2006.

• Lai, A. C.; Tran, S.; Simmonds, R. S., Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. Zooepidemicus. FEMS Microbiology Letters, 215: 133-138, 2002.

• López, M. J.; Ochoa, Z. A.; Santoyo, P. G.; Anaya, L. J.; Medina, M. E.; Martínez, T. M.; Loeza, L. P., Bacteriocinas de bacterias Gram positivas: una fuente potencial de nuevos tratamientos biomédicos. Revista Mexicana de Ciencias Farmacéuticas, 39(3): 49-57, 2008.

• Mantovani, H. C.; Russel, J. B., Nisin resistance of Sreptococcus bovis. Applied and Environmental Microbiology, 67: 808-813, 2001.

• Messi, P.; Bondi, M.; Sabia, C.; Battini, R.; Manicardi, G., Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. International Journal of Food Microbiology, 64: 193-198, 2001.

• Monroy, D. M.; Castro, B. T.; Fernández, P. F.; Mayorga, R. L., Revisión bibliográfica: Bacteriocinas producidas por bacterias probióticas. Contactos, 73: 63-72, 2009.

• Papagianni, M.; Papamichael, E., Purification, amino acid sequence and characterization of the class IIa bacteriocin weissellin A, produced by Weissella paramesenteroides DX. Bioresource Technology, 2: 6730-6734, 2011.

• Rojas, C.; Vargas, P., Bacteriocinas: sustituto de preservantes tradicionales en la industria alimentaria. Tecnología en Marcha, 21(2): 9-16, 2008.

• Samelis, J.; Bleicher, A.; Delbes-Paus, C.; Kakouri, A.; Neuhaus, K.; Montel, MC., FTIR-based polyphasic identification of lactic acid bacteria isolated from traditional Greek Graviera cheese. Food Microbiology, 28: 76-83, 2010.

• Sangronis, E.; García, J., Efecto de la adición de nisina en los parámetros físicos, químicos y sensoriales del queso “telita”. Anales Venezolanos de Nutrición, 20(1): 12-16, 2007.

• Sharma, N.; Kapoor, R.; Gautam, N.; Kumari, R., Purification and characterization of bacteriocin produced by Bacillus subtilis R75 isolated from fermented chunks of mung bean. Food Technology Biotechnology, 49: 169-176, 2011.

• Simha, B. V.; Sood, S. K.; Kumariya, R.; Garsa, A. K., Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiological Research, 167(9): 544-549, 2012. doi:org/10.1016/ j.micres.2012.01.001.

• Siragusa, G. R.; Cutter, C. N.; Willett, J. L., Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 16: 229-235, 1999.

• Torodov, S. D.; Dicks, L. M. T., Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology, 36: 318-326, 2005.

• Snyder A. B.; Worobo, R. W., Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. Journal of the Science of Food and Agriculture, Published online in Wiley Online Library, 2013. DOI: 10.1002/jsfa.6293

• Todorov, S. D.; Prévost, H.; Lebois M.; Dousset X.; LeBlanc, J. G.; Franco, B. D. G. M., Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya) — From isolation to application: Characterization of a bacteriocin. Food Research International, 44: 1351-1363, 2011.

• Tulini, F. L.; Gomes, B. C.; De Martinis, E. C. P., Partial purification and characterization of a bacteriocin produced by Enterococcus faecium 130 isolated from mozzarella cheese. Ciência e Tecnologia de Alimentos, 31(1): 155-159, 2011.

• Vázquez, S. M.; Suárez, H.; Zapata, S., Utilización de sustancias antimicrobianas producidas por bacterias ácido lácticas en la conservación de la carne. Revista Chilena de Nutrición, 36(1): 64-71, 2009.

• Zacharof, M. P.; Lovitt, R. W., Bacteriocins produced by lactic acid bacteria. A review article. APCBEE Procedia, 2: 50-56, 2012.

• Zapata, S.; Muñoz, J.; Ruiz O. S.; Montoya O. I.; Gutiérrez P. A., Aislamiento de Lactobacillus plantarum LPBM10 y caracterización parcial de su

bacteriocina. VITAE, Revista de la Facultad de Química Farmacéutica, 16: 75-82, 2009.

De páginas electrónicas

• Danisco website, Antimicrobials. En: http://www.danisco.com/product-range/antimicrobials/. Septiembre, 2013.

Descargas

Publicado

2013-12-31

Número

Sección

Revisiones Científicas

Categorías