Un esquema para una solución radialmente simétrica de la ecuación del bosón de Higgs en el espacio de De Sitter

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2022873742

Palabras clave:

bosón de Higgs, espacio de De Sitter, radialmente simétrico, convergencia, esquema de diferencias finitas

Resumen

En este trabajo presentamos un esquema numérico de la ecuación del bosón de Higgs en el espacio de De Sitter. Una de sus principales características es su forma variacional, lo cual se traduce en la modelación de la energía asociada al caso continuo. La ecuación mostrada en este trabajo es una generalización que contempla un potencial y un coeficiente de difusión dependiente del tiempo. El esquema propuesto es un método implicito consistente, estable y convergente al sistema continuo. Los resultados de dicho esquema son mostrados y discutidos para mostrar su eficiencia y severidad, todo de acuerdo con los resultados teóricos.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Luis Fernando Muñoz-Pérez, Universidad Autónoma de Aguascalientes

Centro de Ciencias Básicas, Depto. de Matemáticas y Física

Jorge Eduardo Macías Díaz, Universidad Autónoma de Aguascalientes

Centro de Ciencais B´ásicas, Depto. de Matemáticas y Física

José Antonio Guerrero-Díaz de León, Universidad Autónoma de Aguascalientes

Centro de Ciencias Básicas, Departamento de Estadística

Ángel Eduardo Muñoz Zavala, Universidad Autónoma de Aguascalientes

Centro de Ciencias Básicas, Depto. De Estadística

Citas

• Aaboud, M., Aad, G., Abbott, B., Abeloos, B., Abidi, S. H., AbouZeid, O. S., Abraham, N. L., Abramowicz, H., Abreu, H., Abulaiti, Y., y others. (2018). Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment. Physical Review Letters, 120(21), 211802.

• Aad, G., Abajyan, T., Abbott, B., Abdallah, J., Khalek, S. A., Abdelalim, A. A., Aben, R., Abi, B., Abolins, M., AbouZeid, O. S., y others. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1–29.

• Arakawa, A., y Lamb, V. R. (1981). A potential enstrophy and energy conserving scheme for the shallow water equations. Monthly Weather Review, 109(1), 18–36.

• Bahl, H., Heinemeyer, S., Hollik, W., y Weiglein, G. (2018). Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass. The European Physical Journal C, 78(1), 1–21.

• Balogh, A., Banda, J., y Yagdjian, K. (2019). High-performance implementation of a Runge–Kutta finite-difference scheme for the Higgs boson equation in the de Sitter spacetime. Communications in Nonlinear Science and Numerical Simulation, 68, 15–30.

• Ben-Yu, G., Pascual, P. J., Rodriguez, M. J., y Vázquez, L. (1986). Numerical solution of the sine-Gordon equation. Applied Mathematics and Computation, 18(1), 1–14.

• Bezrukov, F., y Shaposhnikov, M. (2008). The Standard Model Higgs boson as the inflaton. Physics Letters B, 659(3), 703–706.

• Carena, M., y Haber, H. E. (2003). Higgs boson theory and phenomenology. Progress in Particle and Nuclear Physics, 50(1), 63–152.

• Cruz-Martinez, J., Gehrmann, T., Glover, E. W. N., y Huss, A. (2018). Second-order QCD effects in Higgs boson production through vector boson fusion. Physics Letters B, 781, 672–677.

• Ellis, J., Gaillard, M. K., y Nanopoulos, D. v. (1991). A phenomenological profile of the Higgs boson. In Current Physics–Sources and Comments (Vol. 8, pp. 24–72). Elsevier.

• Fazio, A. R., y others. (2019). Comparison of the EFT hybrid and three-loop fixed-order calculations of the lightest MSSM Higgs boson mass. Physical Review D, 100(11), 115017.

• Fei, Z., y Vázquez, L. (1991a). Some conservative numerical schemes for an ordinary differential equation. Computational and Applied Mathematics, 10, 59–69.

• Fei, Z., y Vázquez, L. (1991b). Two energy conserving numerical schemes for the sine-Gordon equation. Applied Mathematics and Computation, 45(1), 17–30.

• Grazzini, M., Heinrich, G., Jones, S., Kallweit, S., Kerner, M., Lindert, J. M., y Mazzitelli, J. (2018). Higgs boson pair production at NNLO with top quark mass effects. Journal of High Energy Physics, 2018(5), 59.

• Hut, P., y Klinkhamer, F. R. (1981). Global space-time effects on first-order phase transitions from grand unification. Physics Letters B, 104(6), 439–443.

• Ibrahimbegovic, A., y Mamouri, S. (2002). Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Computer Methods in Applied Mechanics and Engineering, 191(37–38), 4241–4258.

• Jiménez, S., y Vázquez, L. (2016). Elements for the Retrieval of the Solar Spectrum on the Surface of Mars from an Array of Photodiodes. In Stochastic and Infinite Dimensional Analysis (pp. 195–204). Springer.

• Laursen, T. A., y Chawla, V. (1997). Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 40(5), 863–886.

• Lee, S., Sim, J., y Lee, T. H. (2014). Higgs boson in the Brans-Dicke theory and the de Sitter universe. Journal of the Korean Physical Society, 64(4), 611–614.

• Linde, A. (1987). Particle physics and inflationary cosmology. Physics Today, 40(9), 61–68.

• Mannheim, P. D. (2017). Mass generation, the cosmological constant problem, conformal symmetry, and the Higgs boson. Progress in Particle and Nuclear Physics, 94, 125–183.

• Mistlberger, B. (2018). Higgs boson production at hadron colliders at N^3LO in QCD. Journal of High Energy Physics, 2018(5), 28.

• Muñoz-Pérez, L. F., y Macías-Díaz, J. E. (2020). On the solution of a generalized Higgs boson equation in the de Sitter space-time through an efficient and Hamiltonian scheme. Journal of Computational Physics, 109568.

• Muñoz-Pérez, L. F., Macías-Díaz, J. E., y Guerrero, J. A. (2020). A dissipation-preserving finite-difference scheme for a generalized Higgs boson equation in the de Sitter space–time. Applied Mathematics Letters, 107. https://doi.org/10.1016/j.aml.2020.106425

• Pen-Yu, K., y Vázquez, L. (1984). Numerical solution of a nonlinear wave equation in polar coordinates. Applied Mathematics and Computation, 14(4), 313–329.

• Ramírez-Nicolás, M., Sanchez-Cano, B., Witasse, O., Blelly, P.-L., Vázquez, L., y Lester, M. (2016). The effect of the induced magnetic field on the electron density vertical profile of the Mars ionosphere: A Mars Express MARSIS radar data analysis and interpretation, a case study. Planetary and Space Science, 126, 49–62.

• Romero, I., y Armero, F. (2002). An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics. International Journal for Numerical Methods in Engineering, 54(12), 1683–1716.

• Shvartsburg, A. B., Jiménez, S., Erokhin, N. S., y Vázquez, L. (2019). Tunneling and Filtering of Degenerate Microwave Modes in a Polarization-Dependent Waveguide Containing Index Gradient Barriers. Physical Review Applied, 11(4), 44056.

• Shvartsburg, A. B., Pecherkin, V. Y., Jiménez, S., Vasilyak, L. M., Vetchinin, S. P., Vázquez, L., y Fortov, V. E. (2018). Sub wavelength dielectric elliptical element as an anisotropic magnetic dipole for inversions of magnetic field. Journal of Physics D: Applied Physics, 51(47), 475001.

• Simmons, A. J., y Burridge, D. M. (1981). An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Monthly Weather Review, 109(4), 758–766.

• Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Asilar, E., Bergauer, T., Brandstetter, J., Brondolin, E., Dragicevic, M., Erö, J., y others. (2018a). Evidence for the Higgs boson decay to a bottom quark–antiquark pair. Physics Letters B, 780, 501–532.

• Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Asilar, E., Bergauer, T., Brandstetter, J., Brondolin, E., Dragicevic, M., Erö, J., y others. (2018b). Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair. Physical Review Letters, 120(7), 71802.

• Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Asilar, E., Bergauer, T., Brandstetter, J., Dragicevic, M., Erö, J., del Valle, A. E., y others. (2018). Observation of Higgs boson decay to bottom quarks. Physical Review Letters, 121(12), 121801.

• Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Bergauer, T., Dragicevic, M., Erö, J., del Valle, A. E., Flechl, M., Fruehwirth, R., y others. (2020). A measurement of the Higgs boson mass in the diphoton decay channel. Physics Letters B, 135425.

• Strauss, W., y Vazquez, L. (1978). Numerical solution of a nonlinear Klein-Gordon equation. Journal of Computational Physics, 28(2), 271–278.

• Tang, Y.-F., Vázquez, L., Zhang, F., y Pérez-García, V. M. (1996). Symplectic methods for the nonlinear Schrödinger equation. Computers y Mathematics with Applications, 32(5), 73–83.

• Tsuchiya, T., y Nakamura, M. (2019). On the numerical experiments of the Cauchy problem for semi-linear Klein–Gordon equations in the de Sitter spacetime. Journal of Computational and Applied Mathematics, 361, 396–412.

• Vázquez, L., Jiménez, S., y Shvartsburg, A. B. (2016). The wave equation: From eikonal to anti-eikonal approximation. Modern Electronic Materials, 2(2), 51–53.

• Vicente-Retortillo, Á., Valero, F., Vázquez, L., y Martínez, G. M. (2015). A model to calculate solar radiation fluxes on the Martian surface. Journal of Space Weather and Space Climate, 5, A33.

• Voronov, N. A., Dyshko, L., y Konyukhova, N. B. (2005). On the stability of a self-similar spherical bubble of a scalar Higgs field in de Sitter space. Physics of Atomic Nuclei, 68(7), 1218–1226.

• Weinberg, S. (1995). The Quantum Theory of Fields (Vol. 2). Cambridge University Press.

• Yagdjian, K. (2012). On the global solutions of the Higgs boson equation. Communications in Partial Differential Equations, 37(3), 447–478.

• Yagdjian, K. (2013). Huygens’ principle for the Klein-Gordon equation in the de Sitter spacetime. Journal of Mathematical Physics, 54(9), 91503.

• Yagdjian, K. (2014). Semilinear hyperbolic equations in curved spacetime. In Fourier Analysis (pp. 391–415). Springer.

• Yagdjian, K. (2019). Global existence of the self-interacting scalar field in the de Sitter universe. Journal of Mathematical Physics, 60(5), 51503.

• Yagdjian, K., y Balogh, A. (2018). The maximum principle and sign changing solutions of the hyperbolic equation with the Higgs potential. Journal of Mathematical Analysis and Applications, 465(1), 403–422.

Descargas

Publicado

2022-12-31

Número

Sección

Artículos de Investigación

Categorías