Caracterización mecánica por ondas de esfuerzo de madera plastificada de Quercus scytophylla

Autores/as

  • Javier Ramón Sotomayor Castellanos Universidad Michoacana de San Nicolás de Hidalgo https://orcid.org/0000-0002-1527-8801
  • Joel Benancio Olguín Cerón Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.33064/iycuaa2014613653

Palabras clave:

densidad, contenido de humedad, calor, vapor, velocidad de onda de esfuerzo, módulo de elasticidad, madera de Quercus scytophylla

Resumen

Se calcularon la velocidad y los módulos de elasticidad por ondas de esfuerzo en madera de Quercus scytophylla. Las probetas se plastificaron empleando calor transmitido por vapor a baja temperatura y baja presión en condición higrosaturada de la madera. De
manera no destructiva se confirmó empíricamente que el tratamiento higrotérmico en combinación con el deformado plástico no modifica la capacidad de la madera para transmitir ondas de esfuerzo. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Javier Ramón Sotomayor Castellanos, Universidad Michoacana de San Nicolás de Hidalgo

Maestría en Ciencias y Tecnología de la Madera, Facultad de Ingeniería en Tecnología de la Madera

Joel Benancio Olguín Cerón, Universidad Michoacana de San Nicolás de Hidalgo

Maestría en Ciencias y Tecnología de la Madera, Facultad de Ingeniería en Tecnología de la Madera

Citas

• ARIZAGA, S., MARTÍNEZ CRUZ, J., SALCEDO CABRALES, M., y BELLO GONZÁLEZ, M. A. Manual de la biodiversidad de encinos michoacanos. México: Secretaría de Medio Ambiente y Recursos Naturales-Instituto Nacional de Ecología, 2009.

• BELLO GONZÁLEZ, M. A. y LABAT, J. N. Los encinos (Quercus) del estado de Michoacán, México. Collection Etudes Mesoaméricaines. México: Centre d`Etudes Mexicaines et Centraméricaines-Secretaría de Agricultura y Recursos Hidráulicos-Instituto Nacional de Investigaciones Forestales y Agropecuarias, 1987.

• CORNEJO TRONCOSO, J. y BAETTIG PALMA, R. Evolución del módulo de elasticidad longitudinal entre 10°C y 100°C en piezas de Pinus radiata usando una técnica de evaluación no destructiva. Maderas, Ciencia y Tecnología, 11(2): 153-160, 2009.

• ESTÉVEZ, B. M. y PEREIRA, H. M. Wood Modification by Heat Treatment: A Review. Bioresources, 4(1):370-404, 2009.

• GARCÍA, R. A., MONTEIRO DE CARVALHO, A., DE FIGUEIREDO LATORRACA, J. V., MONTEIRO DE MATOS, J. L., SANTOS, W. A. y FONSECA DE MADEIROS SILVA, R. Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Science and Technology, 46(1-3): 41-52, 2012.

• GRAHAM, R. D. Effect of several drying conditions on strength of coast-type Douglas-fir timbers. Forest Products Journal, 7(7): 228-233, 1957.

• GREEN, D. W., WINANDY, J. E. y KRESTSCHMANN, D. E. Chapter 4. Moisture Relations and Physical Properties of Wood. In: Forest Products Laboratory. Wood Handbook: Wood As An Engineering Material, Revised. FPL-GTR-113. USA: U. S. Department of Agriculture-Forest Service-Forest Products Laboratory, 1999.

• HERNÁNDEZ MALDONADO, S. A. Comportamiento elástico de la madera. Teoría y aplicaciones. Tesis de Maestría. México: Universidad Michoacana de San Nicolás de Hidalgo. 2010.

• HERNÁNDEZ SANTIAGO, A., DÁVALOS SOTELO, R., y SALOMÓN QUINTANA, I. Resistencia mecánica de pequeños arcos de madera laminada. Ingeniería, 12(3): 43-52, 2008.

• HWANG, K., JUNG, I., LEE, W., JANG, J., BAE, H., y NORIMOTO, M. Bending Quality of Main Korean Wood Species. Wood Research, 89: 6-10, 2002.

• KOLLMANN, F. F. P. y CÔTÉ, W. A. Volume I: Solid Wood. Principles of Wood Science and Technology. Germany: Springer-Verlag, 1968.

• KUTNAR, A. y ŠERNEK, M. Densification of Wood. Zbornik gozdarstva in lesarstva, 82: 53-62, 2007.

• MAKINAGA, M., NORIMOTO, M. e INOUE, M. Permanent Fixation of Bending Deformation in Wood by Steam Treatment. Wood Research, 84: 39-41, 1997.

• MIETTINEN, P., TITTA, M. y LAPPALAINEN, R. Electrical and Ultrasonic Analysis of Heat-Treated Wood. In: Proceedings of The 14th Symposium on NDT of Wood. University of Evesrwalde, Germany, 265-274, 2005.

• MOHEBBY, B., KAMRAN, Y. y ROOHINIA, M. Acoustic Properties of Hydrothermally Modified Mulberry (Morus alba L.) Wood. In: Proceedings of The Third European Conference on Wood Modification. United Kingdom, pp. 283-286, 2007.

• NIEMIEC, S. S. y BROWN, T. D. Steam Bending Red Alder. In: Western Hardwoods. Value-Added Research and Demonstration Program. General Technical Report FPLGTR-85. USA: U.S. Department of Agriculture-Forest ServiceForest Products Laboratory, 1995.

• NORIMOTO, M. y GRIL, J. Wood Bending Using Microwave Heating. Journal of Microwave Power and Electromagnetic Energy, 24(4): 203-212, 1989.

• OLGUÍN CERÓN, J. B. y SOTOMAYOR CASTELLANOS, J. R. Plastificado higro-térmico de madera de Quercus scytophylla. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes, 59: 25-33, 2013.

• OLTEAN, L., TEISCHINGER, A. y HANSMANN, C. Influence of Temperature on Cracking and Mechanical Properties of Wood During Wood Drying-A Review. BioResources, 2(4): 789-811, 2007.

• PECK, E. C. Bending Solid Wood to Form. Agriculture Handbook No. 125. USA: U.S. Department of Agriculture-Forest Service, 1957.

• PELLERIN, R. F. y ROSS, R. J. Nondestructive Evaluation of Wood. USA: Forest Products Society, 2002.

• PÉREZ OLVERA, C. P. y DÁVALOS SOTELO, R. Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México. Madera y Bosques, 14(3): 43-80, 2008.

• PERRÉ, P. Experimental device for the accurate determination of wood-water relations on micro-samples. Holzforschung, 61: 419-429, 2007.

• ROWELL, R. LANGE, S., MCSWEENY, J., y DAVIS, M. Modification of Wood Fiber Using Steam. In: Proceedings of The 6th Pacific Rim Bio-Based Composites Symposium & Workshop on The Chemical Modification of Cellulosics. USA, pp. 606-615, 2002.

• SOTOMAYOR CASTELLANOS, J. R., GURIDI GÓMEZ, L. I., y GARCÍA MORENO, T. Características acústicas de la madera de 152 especies mexicanas. Velocidad del ultrasonido, módulo de elasticidad, índice material y factor de calidad. Base de datos. Investigación e Ingeniería de la Madera, 6(1): 3-32. México, 2010.

• TEISCHINGER, A. Effect of different drying temperatures on selected physical wood properties. In: Proceedings 3rd IUFRO International Wood Drying Conference. Austria, 1992.

• TERZIEV, N. y DANIEL, G. Industrial kiln drying and its effect on microstructure, impregnation and properties of Scots pine timber mpregnated for above ground use. Holzforschung, 56: 434-439, 2002.

• THIAM, M., MILOTA, M. R., y LEICHTI, R. J. Effect of hightemperature drying on bending and shear strengths of western hemlock lumber. Forest Products Journal, 52(4): 64-68, 2002.

• THOMPSON, W. S. Effect of steaming and kiln drying on the properties of Southern pine poles. Forest Products Journal, 19(1): 21-28, 1969.

• WEIGL, M., MÜLLER, U., WIMMER, R.,y HANSMANN, C. Ammonia vs. Thermally Modified Timber–Comparison of Physical and

Mechanical Properties. European Journal of Wood Products, 70(1-3): 233-239, 2012.

• WIDMANN, R., BEIKIRCHER, W. y FISHER, A. Mechanical Properties of Thermal Treated Hardwood (Beech): Bending and Tension Strength and Stiffness of Boards. In: Proceedings of The Third European Conference on Wood Modification. United Kingdom, pp. 187-190, 2007.

De páginas electrónicas

• KATSURAGI, K. Furniture Maker Tai-Workshop. De: http://www.tai-workshop.com/english/index-e.html. Japan, jun. 2012.

• OLTEAN, L., TEISCHINGER, A. y HANSMANN, C. Influence of low and moderate temperature kiln drying schedules on specific mechanical properties of Norway spruce wood. European Journal of Wood Products, 69(3): 451-457, 2011. DOI 10.1007/s00107-010-0467-1.

Descargas

Publicado

2014-04-30

Número

Sección

Artículos de Investigación

Categorías