Aceites esenciales más vitamina D3 comparado con la suplementación con monensina a dietas de crecimiento para toretes: Rendimiento productivo

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2022863637

Palabras clave:

Aceites esenciales, Vitamina D3, monensina, Corral de engorda, Crecimiento-finalización

Resumen

Los antibióticos como aditivos en dietas ofrecidas a ganado en crecimiento-finalización están siendo prohibidos, por tanto, el propósito de esta investigación fue determinar parámetros productivos de toretes al usar como aditivo una mezcla de aceites esenciales y vitamina D3 (EO+HyD). Por ello, se realizó un ensayo de alimentación con 1,620 toretes los cuales se alimentaron los primeros 126 días de la engorda con una dieta suplementada con EO+HyD (120+0.12 mg/kg de dieta, respectivamente) o con monensina sódica (MON, 25 mg/kg de dieta). El ganado que recibió EO+HyD mostró mayor (P<0.05) ganancia diaria de peso y eficiencia para ganancia (4.1%), mejorando 3.2% la energía neta de la dieta. La morbilidad fue menor (2.72 vs 6.17%) para el ganado suplementado con EO+HyD. Se concluye que EO+HyD es una alternativa promisoria para reemplazar la monensina sódica en la formulación de alimentos en la etapa inicial para bovinos de engorda

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Elizama Ponce-Barraza, Universidad Autónoma de Sinaloa

Doctorado en ciencias agropecuarias, por la Universidad Autónoma de Baja California (UABC),  área de salud animal, Maestría en Ciencias Veterinarias, área de Salud Animal del Instituto de Investigaciones en Ciencias-UABC, Mexicali B. C. Durante la licenciatura y posgrado trabajó en el diagnóstico, histológico, serológico y molecular de las micobacterias.

Desde el 20 de febrero de 2017 hasta el 15 de septiembre de 2021 fungió como coordinador Estatal, de la Campaña Nacional Control la Tuberculosis bovina, en el Estado de Sinaloa.

Actualmente se encuentra laborando en la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Autónoma de Sinaloa como docente investigador.

Alfredo Estrada-Angulo, Universidad Autónoma de Sinaloa

Facultad de Medicina Veterinaria y Zootecnia

Daniel Alejandro Mendoza-Cortéz, Universidad Autónoma de Sinaloa

Facultad de Medicina Veterinaria y Zootecnia

Beatriz Isabel Castro-Pérez, Universidad Autónoma de Sinaloa

Facultad de Medicina Veterinaria y Zootecnia

Alejandro Plascencia-Jorquera, Universidad Autónoma de Occidente, Unidad Guasave, Sinaloa

Departamento de Ciencias Naturales y Exactas, Universidad Autónoma de Occidente, Unidad Guasave, Sinaloa

Citas

Acedo, T.S., R. Goulard, V. Gouvea, G.F. Machado, P.R. Leme, A.S. Metto, & Silva S.L. (2018). Effect of essential oils and exogenous enzyme on adaptation period of cattle fed different roughages sources. Journal of Animal Science, 96 (Suppl. 3), 441-442 (Abstr.). https://doi.org/10.1093/jas/sky404.966.

AOAC. (2000). Official Methods of Analysis. Association of Official Analytical Chemists. Gaithersburg, MD.

Appuhamy, J.A.D.R., A. B. Strathe, S. Jayasundara, C. Wagner-Riddle, J. Dijkstra, J. France, & Kebreab, E. (2013). Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. Journal of Dairy Science, 96(8), 5161-73. https://doi.org/10.3168/jds.2012-5923.

Araujo, R.C., D.R. Daley, S.R. Goodall, S. Jalil, O.A. Guimares-Bisnieto, A.M. Bude, J.J. Warner, & Engle, T.E. (2019). Effects of a microencapsulated blend of essential oils supplemented alone or in combination with monensin on performance and carcass characteristics of growing-finishing beef steers. Applied Animal Science, 35 (2), 177–184. https://doi.org/10.15232/aas.2018-01822.

Arteaga-Wences, Y.J., A. Estrada-Angulo, F.G. Gerardo Ríos-Rincón, B.I. Castro-Pérez, D.A. Mendoza-Cortéz, O. M. Manriquez-Núñez, A. Barreras, L. Corona-Gochi, R.A. Zinn, X.P. Perea-Domínguez, & Plascencia, A. (2021).The effects of feeding a standardized mixture of essential oils vs monensin on growth performance, dietary energy and carcass characteristics of lambs fed a high-energy finishing diet. Small Ruminant Research, 205, 106557.https://doi.org/10.1016/j.smallrumres.2021.106557.

Azzaz, H.H., Hussein A. Murad, H.A., & Morsy, T.A. (2015).Utility of Ionophores for Ruminant Animals: A Review. Asian Journal of Animal Science, 9(6)254-265. https://doi.org/10.3923/ajas.2015.254.265.

Bakkalia, F., S. Averbeck, D.Averbeck, & Idaomar, M.I.. (2008). Food and Chemical Toxicology, 46(2), 446-475. https://doi.org/10.1016/j.fct.2007.09.106.

Barreras, A., B.I. Castro-Pérez, M.A. López Soto, N. G. Torrentera, M.F. Montaño, A. Estrada-Angulo, F.G. Ríos1, H. Dávila-Ramos, A. Plascencia, & Zinn, R.A. (2013). Influence of ionophore supplementation on growth performance, dietary energetics and carcass characteristics in finishing cattle during period of heat stress. Asian-Australasian Journal of Animal Science, 26(11), 1553-1561. https://doi.org/10.5713/ajas.2013.13216.

Benchaar, C., J.L. Duynisveld, & Charmley, E. (2006). Effects of monensin and increasing dose levels of a mixture of essential oil compounds on intake, digestion and growth performance of beef cattle. Canadian Journal of Animal Science, 86 (1), 91-96. https://doi.org/10.4141/A05-027.

Buda, M., K.C. Raper, J.M. Riley, & Peel, D.S. (2020). Determinants of feedlot cattle death loss rates. Journal of Applied Farm Economics, 3(2), Article 1. Recuperado de https://docs.lib.purdue.edu/jafe/vol3/iss2/1.

Calsamiglia, S., M. Busquet, P.W. Cardozo, L. Castillejos, & Ferret A. (2007) Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6), 2580-2595. https://doi.org/10.3168/jds.2006-644.

Carrillo-Herrera, J., M. Murillo-Ortiz, E. Herrera-Torres, F. Carrete-Carreón, O. Reyes-Estrada y Livas-Calderón, F. (2016). Rendimiento productivo y calidad de la canal de becerros alimentados con precursor glucogénico. Abanico Veterinario, 6(1), 13-21.Recuperado de https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=65791.

Carvalho, V.V., & Perdigão, A. (2019). Supplementation of 25-hydroxy-vitamin-D3 and increased vitamin E as a strategy to increase carcass weight of feedlot beef cattle. Journal of Animal Science, 97 (Suppl.3):440. https://doi.org/10.1093/jas/skz258.871.

Cobellis, G., M. Trabalza-Marinucci, & Yu, Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment, 545 (3), 556-568. https://doi.org/10.1016/j.scitotenv.2015.12.103.

Comision Europea (2003). Regulation (EC) No. 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Off. J. Eur. Union: L268/29–L268/43. Recuperado de https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003R1831&rid=10.

de Souza, K.A., J.O. Monteschio, C. Mottin, T.R. Ramos, L.A. Pinto, C.E. Eiras, A. Guerrero, & Prado, I.N. (2019). Effect of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities in Nellore heifers finished in feedlot. Livestock Science, 220(2), 190-195.https://doi.org/10.1016/j.livsci.2018.12.026.

Drouillard, J.S. (2018). Current situation and future trends for beef production in the United States of America — A review. Asian-Australasian Journal of Animal Science, 31(7), 1007– https://doi.org/1016. 10.5713/ajas.18.0428.

Duff, G.C. & Galyean, M.L. (2007). Recent Advances in Management of Highly Stressed, Newly Received Feedlot Cattle. Journal of Animal Science, 85 (30), 823-840. http://dx.doi.org/10.2527/jas.2006-501.

Duffield, T.F., J.K. Merrill, & Bagg R.N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(12), 4583-4592.10.2527/jas2011-5018.

Erickson, G.E., V.R. Bremer, T.J. Klopfestein, D.R. Smith, K.J. Hanford, R.E Peterson, L.O. Burciaga-Robles, D.B. Faulkner, & Krehbiel, C.R. (2011). Relationship between morbidity and performance in feedlot cattle. Nebraska Beef Cattle Report, 87-89. Recuperado de https://beef.unl.edu/71f3a0bc-2c7a-4c49-b7fe-0681bd627feb.pdf.

Giannenas, I., Skoufus, J., Giannakopoulos, C., Wiemann, M., Gortzi, O., Lalas, O., Kyriazakis, S., 2011. Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. Journal of Dairy Science, 94 (11), 5569-5577. http://dx.doi.org/10.3168/jds.2010-4096.

Gouvêa, V.N., M.A. Meschiatti, J.M.M. Moraes, C.D.A. Batalha, J.R.R. Dórea, T.S. Acedo, L.F.M. Tamassia, F.N. Owens, F.N., & Santos, F.A.P. (2019). Effects of alternative feed additives and flint maize grain particle size on growth performance, carcass traits and nutrient digestibility of finishing beef cattle. Journal of Agriculture Science, 157(5), 456–468. https://doi.org/10.1017/S0021859619000728.

Irsik, M., M. Langemeier, T. Schroeder, M. Spire, & Roder, J.D. (2006). Estimating the effects of animal health on the performance of feedlot cattle. Bovine Practice, 40:65-74. Recuperado de https://extension.vetmed.ufl.edu/wp-content/blogs.dir/3072/files/2012/02/Estimating-the-Effects-of-Animal-Health-on-the-Performance-of-Feedlot-Cattle.pdf.

Latack, B.C., M.F., Montano, R.A. Zinn, & Salinas-Chavira, J. (2021). Effects of a blend of cinnamaldehyde-eugenol and capsicum (Xtract® Ruminant 7065) and ionophore on performance of finishing Holstein steers and on characteristics of ruminal and total tract digestion. Journal of Applied Animal Research, 49 (1), 185–193. https://doi.org/10.1080/09712119.2021.1934477.

Liu, Y., C.D. Espinosa, J.J. Abelilla, G.A. Casas, L.V. Lagos, S.A. Lee, W. B. Kwon, J.K. Mathai, D.M.D. L. Navarro, N.W. Jaworski, & Stein, H.H. (2018). Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition, 4(2), 113-125. https://doi.org/10.1016/j.aninu.2018.01.007.

Marques, R. da S., & Cooke, R.F. (2021).Effects of Ionophores on Ruminal Function of Beef Cattle (Review). Animals, 11, 2871. https://doi.org/10.3390/ani11102871.

Martins, T.E., T.S. Acedo, V.N. Gouvea, G.S. Vasconcelos, M.B. Arrigoni, C.L. Martins, D.D. Millen, M.D. Pai, A. Perdigao, G.F. Melo, R.A. Rizzieri, M.L. Rosolen, C. Costa, & Sartor, A.B. (2020). Effects of 25-hydroxycholecalciferol supplementation on gene expression of feedlot cattle. Journal of Animal Science, 98, (Suppl.4), 302–303, https://doi.org/10.1093/jas/skaa278.542.

Meschiatti, M.A.P., V.N. Gouvea, L.A. Pellerini, C.D.A. Batalha, M.V. Bielhl, T.S. Acedo, J.R.R. Dórea, L.F.M. Tamasia, F.N. Owens, & F.A.P Santos, F.A.P. (2019). Feeding the combination of essential oils and exogenous amylase increases performance and carcass production of finishing cattle. Journal of Animal Science, 97 (1), 456-471. https://doi.org/10.1093/jas/sky415.

Meyer, N.F., G.E. Erickson, T.J. Klopfenstein, M.A. Greenquist, M.K. Luebbe, P. Williams, & Engstrom, M.A. (2009). Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. Journal of Animal Science, 87(7), 2346–2354. https://doi.org/10.2527/jas.2008-1493.

Montano, M.F., O.M. Manriquez, J. Salinas-Chavira, N Torrentera, & Zinn, R.A. (2015). Effects of monensin and virginiamycin supplementation in finishing diets with distiller dried grains plus solubles on growth performance and digestive function of steers. Journal of Applied Animal Research, 43(4), 417–425. https://doi.org/10.1080/09712119.2014.978785.

NASEM. (2016). National Academies of Sciences, Engineering, and Medicine. Nutrient requirements of beef cattle. 8th revised ed. National Academy Press, Washington, DC, USA.

Nehme, R., S. Andrés, R.B. Pereira, M.B. Jemaa, S. Bouhallab, F. Ceciliani, S. López, F.Z. Rahali, R. Ksouri, D.M. Pereira, & Abdennebi-Najar, L. (2021). Essential Oils in Livestock: From Health to Food Quality. Antioxidants, 10, 330. https://doi.org/10.3390/antiox10020330.

Nelson, C.D., T.A. Reinhardt, J.D. Lippolis, R.E. Sacco, & Nonnecke, B.J. (2012).Vitamin D Signaling in the Bovine Immune System: A Model for Understanding Human Vitamin D Requirements. Nutrients, 4(3), 181-96. https://doi.org/10.3390/nu4030181.

NRC. (2000). Nutrient Requirements of Beef Cattle. 7th Update Ed. The National Academies Press, Washington, DC. Recuperado de https://www.nap.edu/catalog/9791/nutrient-requirements-of-beef-cattle-seventh-revised-edition-update-2000.

OMS. (2017). Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. World Health Organization. Recuperado de https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance.

Ornaghi, M.G., R.A.C. Passetti, J.A. Torrecilhas, C. Mottin, A.C.P.Vital, A. Guerrero, C. Sañudo, M. del Mar Campo, & Prado, I.N. (2017). Essential oils in the diet of young bulls: Effects on animal performance, digestibility, temperament, feeding behavior and carcass characteristics. Anim. Feed Science and Technology, 234(12), 274-283. https://doi.org/10.1016/j.anifeedsci.2017.10.008.

Pereira, M. C. S., Rigueiro, A. L. N., Oliveira, C. A. de, Soutello, R. V. G. de, Arrigoni, M. D. B., & Millen, D. D. (2019). Different doses of sodium monensin on feedlot performance, carcass characteristics and digestibility of Nellore cattle. Acta Scientiarum. Technology, 41(1), e34988. https://doi.org/10.4025/actascitechnol.v41i1.34988.

Samuelson, K.L., M.E. Hubbert, M. L. Galyean, & Löest, C.A. (2016). Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. Journal of Animal Science, 94(6):2648-63. https://doi.org/doi: 10.2527/jas.2016-0282.

SAS. (2007) Statistical Analyses System Institute Inc. SAS/STAT user’s guide: Version 9.1. Cary, NC, USA.

Tedeschi, L.O., Gorocica-Buenfil, M.A., 2018. An assessment of the effectiveness of virginiamycin on liver abscess incidence and growth performance in feedlot cattle: a comprehensive statistical analysis. Journal of Animal Science, 96(6):2474–2489. https://doi.org/10.1093/jas/sky121.

Thema, K., V. Mlambo, N. Snyman, & Mnisi, CM. (2019). Evaluating alternatives to zinc-bacitracin antibiotic growth promoter in broilers: physiological and meat quality responses. Animals, 9, 1160. https://doi.org/10.3390/ani9121160.

Toseti, L.B., R. S. Goulart, V.N. Gouvea, T.A. Acedo, S.F.M. Guilherme, A, V. Pires, P.R. Leme, A.S. Netto, & Silva, SL. (2020). Effects of a blend essential oils and exogenous α-amylase in diets containing different roughage sources for finishing beef cattle. Animal Feed Science & Technology, 269(12)114643. https://doi.org/10.1016/j.anifeedsci.2020.114643.

Ustuner, H., S. Ardicli, O. Arslan, & Brav F.C. (2020).Fattening performance and carcass traits of Imported Simmental bulls at different initial fattening age. Large Animal Review, 26(4)161-165. Recuperado de https://www.largeanimalreview.com/index.php/lar/article/view/161/84.

Wherry, T.L.T., R. Dassanayake, E. Casas, S. Mooyottu, J.P. Bannantine, & Stabel, J.R. (2022). Exogenous vitamin d3 modulates response of bovine macrophages to mycobacterium avium subsp. paratuberculosis infection and is dependent upon stage of Johne’s disease. Frontiers in Cellular Infection Microbiology, 11, 773938. https://doi.org/10.3389/fcimb.2021.773938.

Zinn, R.A., A. Barreras, F.N. Owens, & A. Plascencia. (2008). Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. Journal of Animal Science, 86 (10), 1-10. https://doi.org/10.2527/jas.2007-0561.

Zinn, R.A., A. Plascencia, & Barajas, R. (1994). Interaction of forage level and monensin in diets for feedlot cattle on growth performance and digestive function. Journal of Animal Science, 72(9), 2209-2215.10.2527/1994.7292209x

Publicado

2022-08-31

Número

Sección

Artículos de Investigación

Categorías