Integrón bacteriano. Estructura, resistencia antibiótica y aplicaciones benéficas

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2022873631

Palabras clave:

integrón, casete, patógenos bacterianos, resistencia antibiótica, terapia, aplicación biotecnológica

Resumen

Los integrones son sistemas modulares genéticos que le permiten a las bacterias adaptarse a diferentes ambientes. El objetivo de esta revisión es conocer la estructura de los integrones, su participación en la evolución bacteriana y su papel en la diseminación de resistencia y de virulencia. Así mismo, abordamos como se está utilizando la naturaleza flexible y de recombinación de los integrones, a nivel biotecnológico para aplicaciones prometedoras como el diseño de terapias novedosas para vencer el problema de la resistencia antibiótica, el de biorremediación para recuperar el medio ambiente y en la industria para la obtención de proteínas benéficas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Margarita María de la Paz Arenas-Hernández, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biomedicina, Eje de Microbiología. Facultad de Medicina

Aranzazú Del Pilar Romano-Valerio, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biomedicina, Eje de Microbiología. Facultad de Medicina

Carolina Acevedo-Ocampo, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biomedicina, Eje de Microbiología. Facultad de Medicina

Citas

Akrami, F., Rajabnia, M., & Pournajaf, A. (2019). Resistance integrons; A Mini review. Caspian Journal of Internal Medicine, 10(4), 370–376. https://doi.org/10.22088/cjim.10.4.370

• Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2013). An antibiotic-resistant class 3 integron in an enterobacter cloacae isolate from hospital effluent. Clinical Microbiology and Infection, 19(7), E306–E308. https://doi.org/10.1111/1469-0691.12186

• Cambray, G., Guerout, A. M., & Mazel, D. (2010). Integrons. Annual Review of Genetics, 44, 141–166. https://doi.org/10.1146/annurev-genet-102209-163504

• Cao, X., Xu, X., Zhang, Z., Shen, H., Chen, J., & Zhang, K. (2014). Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1–5. https://doi.org/10.1186/1476-0711-13-16

• Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials, 14(1), 1–11. https://doi.org/10.1186/s12941-015-0100-6

• Di Conza, J. A. & Gutkind, G. O. (2010). Integrones: los coleccionistas de genes. Argent. Microbiol., 42, 63–78. http://www.scielo.org.ar/scielo.php?script=sci_isoref&pid=S0325-75412010000100014&lng=es&tlng=es

• Domingues, S., da Silva, G. J., & Nielsen, K. M. (2012). Integrons. Mobile Genetic Elements, 2(5), 211–223. https://doi.org/10.4161/mge.22967

• Domingues, S., Da Silva, G. J., & Nielsen, K. M. (2015). Global dissemination patterns of common gene cassette arrays in class 1 integrons. Microbiology (United Kingdom), 161(7), 1313–1337. https://doi.org/10.1099/mic.0.000099

• Elsaied, H., Stokes, H. W., Kitamura, K., Kurusu, Y., Kamagata, Y., & Maruyama, A. (2011). Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays. ISME Journal, 5(7), 1162–1177. https://doi.org/10.1038/ismej.2010.208

• Fonseca, É. L., & Vicente, A. C. (2022). Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms, 10(2). https://doi.org/10.3390/microorganisms10020224

• Gestal, A. M., Liew, E. F., & Coleman, N. V. (2011). Natural transformation with synthetic gene cassettes: New tools for integron research and biotechnology. Microbiology, 157(12), 3349–3360. https://doi.org/10.1099/mic.0.051623-0

• Ghaly, T. M., Geoghegan, J. L., Tetu, S. G., & Gillings, M. R. (2020). The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends in Microbiology, 28(6), 455–464. https://doi.org/https://doi.org/10.1016/j.tim.2019.12.002

• Gillings, M. R. (2014). Integrons: Past, Present, and Future. Microbiology and Molecular Biology Reviews, 78(2), 257–277. https://doi.org/10.1128/mmbr.00056-13

• González R, G., Mella M, S., Zemelman Z, R., Bello T, H., & Domínguez Y, M. (2004). Integrones y cassettes genéticos de resistencia: Estructura y rol frente a los antibacterianos. Revista Medica de Chile, 132(5), 619–626. https://doi.org/10.4067/s0034-98872004000500013

• Guney, A. K. (2014). A Study on Class I Integrons and Antimicrobial Resistance among Clinical Staphylococci Isolates from a Turkish Hospital. Clinical Microbiology: Open Access, 03(06). https://doi.org/10.4172/2327-5073.1000173

• Hall, R. M., & Collis, C. M. (1995). Mobile gene cassettes and integrons: capture and spread of genes by site‐specific recombination. Molecular Microbiology, 15(4), 593–600. https://doi.org/10.1111/j.1365-2958.1995.tb02368.x

• Hall, R. M., & Collis, C. M. (1998). Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resistance Updates, 1(2), 109–119. https://doi.org/10.1016/S1368-7646(98)80026-5

• Kan, A., & Joshi, N. S. (2019). Towards the directed evolution of protein materials. MRS Communications, 9(2), 441–455. https://doi.org/10.1557/mrc.2019.28

• Kaushik, M., Kumar, S., Kapoor, R. K., Virdi, J. S., & Gulati, P. (2018). Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 51(2), 167–176. https://doi.org/10.1016/j.ijantimicag.2017.10.004

• Koenig, J. E., Boucher, Y., Charlebois, R. L., Nesbø, C., Zhaxybayeva, O., Bapteste, E., Spencer, M., Joss, M. J., Stokes, H. W., & Doolittle, W. F. (2008). Integron-associated gene cassettes in Halifax Harbour: Assessment of a mobile gene pool in marine sediments. Environmental Microbiology, 10(4), 1024–1038. https://doi.org/10.1111/j.1462-2920.2007.01524.x

• Koenig, Jeremy E., Bourne, D. G., Curtis, B., Dlutek, M., Stokes, H. W., Doolittle, W. F., & Boucher, Y. (2011). Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: Genomic hotspots for environmental adaptation. ISME Journal, 5(6), 962–972. https://doi.org/10.1038/ismej.2010.193

• Koenig, Jeremy E., Sharp, C., Dlutek, M., Curtis, B., Joss, M., Boucher, Y., & Doolittle, W. F. (2009). Integron gene cassettes and degradation of compounds associated with industrial waste: The case of the SydneyTar Ponds. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005276

• Kumar, A. (2020). Jump around: Transposons in and out of the laboratory. F1000Research, 9, 1–12. https://doi.org/10.12688/f1000research.21018.1

• Mazel, D. (2006). Integrons: Agents of bacterial evolution. Nature Reviews Microbiology, 4(8), 608–620. https://doi.org/10.1038/nrmicro1462

• Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4), 1–61. https://doi.org/10.1128/CMR.00088-17

• Rubin, J., Mussio, K., Xu, Y., Suh, J., & Riley, L. W. (2020). Prevalence of Antimicrobial Resistance Genes and Integrons in Commensal Gram-Negative Bacteria in a College Community. Microbial Drug Resistance, 26(10), 1227–1235. https://doi.org/10.1089/mdr.2019.0279

• Sabaté, M., & Prats, G. (2002). Estructura y función de los integrones. Enfermedades Infecciosas y Microbiología Clínica, 20(7), 341–345. https://doi.org/10.1016/s0213-005x(02)72813-9

• Sabbagh, P., Rajabnia, M., Maali, A., & Ferdosi-Shahandashti, E. (2021). Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iranian Journal of Basic Medical Sciences, 24(2), 136–142. https://doi.org/10.22038/ijbms.2020.48905.11208

• Shi, L., Zheng, M., Xiao, Z., Asakura, M., Su, J., Li, L., & Yamasaki, S. (2006). Unnoticed spread of class 1 integrons in gram-positive clinical strains isolated in Guangzhou, China. Microbiology and Immunology, 50(6), 463–467. https://doi.org/10.1111/j.1348-0421.2006.tb03815.x

• Simo Tchuinte, P. L., Stalder, T., Venditti, S., Ngandjio, A., Dagot, C., Ploy, M. C., & Barraud, O. (2016). Characterisation of class 3 integrons with oxacillinase gene cassettes in hospital sewage and sludge samples from France and Luxembourg. International Journal of Antimicrobial Agents, 48(4), 431–434. https://doi.org/10.1016/j.ijantimicag.2016.06.018

• Stokes, H. W., Holmes, A. J., Nield, B. S., Holley, M. P., Nevalainen, K. M. H., Mabbutt, B. C., & Gillings, M. R. (2001). Gene Cassette PCR: Sequence-Independent Recovery of Entire Genes from Environmental DNA. Applied and Environmental Microbiology, 67(3–12), 5240–5246. https://doi.org/10.1128/aem.67.11.5240-5246.2001

• Uchiyama, T. and Miyazaki, K. (2009). Functional metagenomics for enzyme discovery:challenges to efficient screening. Current Opinion in Biotechnology, 20, 616–622.

• Yamaji, R., Friedman, C. R., Rubin, J., Suh, J., Thys, E., McDermott, P., Hung-Fan, M., & Riley, L. W. (2018). A Population-Based Surveillance Study of Shared Genotypes of Escherichia coli Isolates from Retail Meat and Suspected Cases of Urinary Tract Infections. MSphere, 3(4). https://doi.org/10.1128/mSphere.00179-18

Descargas

Publicado

2022-12-31

Número

Sección

Revisiones Científicas

Categorías