Medición de la profundidad de flujo de calor y difusividad térmica en suelos con texturas diferentes por dos métodos de análisis
DOI:
https://doi.org/10.33064/iycuaa2014623621Palabras clave:
difusividad térmica, temperatura del sueloResumen
Los estudios de térmica de suelos proporcionan información básica de utilidad por su estrecha relación con procesos biológicos y fisicoquímicos indispensables, tanto para ambientes naturales como los sujetos a manejo, como los dedicados a la producción agrícola y ambientación urbana. El objetivo del presente estudio fue comparar dos métodos, relación de rangos (RR) y máxima
ocurrencia (MO), para estimar la profundidad de amortiguamiento (d) y la difusividad térmica (α), por ser dos variables que describen el comportamiento teórico del flujo vertical de la temperatura en el suelo. La presente investigación se llevó a cabo en
el Jardín Hidráulico del Departamento de Riego y Drenaje de la Universidad Autónoma Agraria Antonio Narro en Buenavista, Saltillo, Coahuila (Lat. 25.353 N y Long -101.033° O).
Descargas
Métricas
Citas
• AGNIEZKA, D. D. Thermal properties in luvisol under conventional and conservation tillage. Tesis of Dissertation to Obtain PhD. Aus dem Institut for Pflanzenernährung und Bodenkunde der Christian-Albrechts-Universität zu Kiel. Kiel, Germany 2006.
• BAHN, M. et al. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences, 7: 2147–2157, 2010.
• CENGEL, Y. J. y GHAJAR, A. J. Transferencia de calor y masa. Fundamentos y aplicaciones. 4. ed., México: Ed. Mc Graw Hill. 922 pp., 2011.ISBN: 3456789012.
• CHACKO, P. T. y RENUKA, G. Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala. Indian Acad. Sci. (Earth Planet. Sci.), 111(1): 79-85, 2002.
• CHACKO, P. T. y RENUKA, G. Thermal diffusivity of soil in isohyperthermic temperatura regime by harmonic analysis. Indian Journal of Radio & Soace Physics, 37: 360-365, 2008.
• DERU, M. A model for ground-coupled heat and moisture transfer from buildings. Technical report. Golden Colorado, CO, USA: National Renewable Energy Laboratory. 2003.
• DRURY, C. F. et al. Red clover and tillage influence on soil temperature, water content, and corn emergence. Agron. J., 91: 101-108, 1999.
• ELIMOEL, E. A. et al. Analytical soil-temperature model: correction for temporal variation of daily amplitude. Soil Sci. Soc. Am J., 68: 784-788, 2004.
• ENCINA, D. J. A. et al. Composición y aspectos estructurales de los bosques de encino de la sierra de Zapalinamé, Coahuila, México. Acta Botánica Mexicana, 86: 71-108, 2009.
• GAO, Z. Determination of soil heat flux in a tibetan short-grass prairie. Boundary-Layer Meterology, 114: 165-178, 2005.
• GUPTA S. C. et al. Predicting soil temperature and soil heat flux under different tillage-surface residue conditions. Soil Sci. Soc. Am. J., 48(2): 223-232, 1984.
• HORTON, R. y WIERENGA, P. J. Estimating the soil heat flux from observations of soil temperature near the surface. Soil Sci. Soc. Am. J., 47: 14-20, 1983.
• HORTON, R. et al. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci. Soc. Am. J., 47: 25-32, 1983.
• KARAM MOSTAFA, A. A thermal wave approach for heat transfer in a no uniform soil. Soil Sci. Soc. Am J., 64: 1219-1225, 2000.
• LÓPEZ-SANTOS, A. et al. Impacto de la labranza en el flujo energético de un suelo arcilloso. Revista Terra Latinoamericana, 26(3): 203-213, 2008.
• MASSMAN, W. J. y LEE, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric. For. Meteorol., 113: 121-144, 2002.
• OCHSNER, T. E. et al. Soil heat storage measurements in energy balance studies. Agron. J., 99: 311-319, 2007.
• PARKIN, T. B. y KASPAR, T. C. Temperature controls on diurnal carbon dioxide flux: implications for estimating soil carbon loss. Soil Sci. Soc. Am. J., 67: 1763-1772, 2003.
• PETERS-LIDARD, C. D. The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes. Journal of the Atmospheric Sciencies, 55: 1209-1224, 1998.
• SU, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1): 85-99, 2002.
De páginas electrónicas
• EVETT, S. R. et al. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50(2012): 41-54, 2012. De: doi.org/10.1016/j.advwatres.2012.04.012.
• GAO, Z. et al. Determination of soil temperature in an arid region. Journal of Arid Environments, 71: 157-168, 2007. doi:10.1016/j.jaridenv.2007.03.012.
• HEUSINKVELD, B. G. et al. Surface energy balance closure in an arid region: role of soil heat flux. Agricultural and Forest Meteorology, 122(2004): 21-37, 2004. doi:10.1016/j.agrformet.2003.09.005.
• ILLSTON, G. B. et al. Evaluation of a heat dissipation sensor for in situ measurement of soil temperature. Soil Sci. Soc. Am. J., 77:
-747, 2013. doi:10.2136/sssaj2012.0189.
• MA, Y. et al. Stand ages regulate the response of soil respiration to temperature in a Larix principis-rupprechtii plantation. Agricultural and Forest Meteorology, 184: 179-187, 2014. doi:doi.org/10.1016/j.agrformet.2013.10.008.
• MIN-HO KOO y SONG, YOONHO. Estimating apparent thermal diffusivity using temperature time series: A comparison of temperature data measured in KMA boreholes and NGMN wells. Geosciences Journal, 12(3): 255-264, 2008. doi:10.1007/s12303-008-0026-5.
• OLDROYD, H. J. et al. Thermal diffusivity of seasonal snow determined from temperature profiles. Advances in Water Resources, 55: 121-130, 2013. doi:doi.org/10.1016/j.advwatres.2012.06.011.
• OZGENER, O. et al. A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications. International Journal of Heat and Mass Transfer, 62: 473-480, 2013. De: doi.org/10.1016/j.ijheatmasstransfer.2013.03.031
• OZTURK, M. et al. Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci., 91(4): 551-562, 2011. doi:10.4141/CJSS10073.
• SHAO, C. et al. Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems. Agricutural and Forest Meteorology, 148: 1433-1443, 2008. doi:10.1016/j.agrformet.2008.04.008.
• SMALLS-MANTEY, L. et al. Validation of two soil heat flux estimation techniques against observations made in an engineered urban green space. Urban Climate, 3: 56-66, 2013. De: dx.doi.org/10.1016/j.uclim.2012.11.001
• VERHOEF, A. et al. Spatio-temporal surface soil heat flux estimates from satellite data; results for the AMMA experiment at the Fakara (Niger) supersite. Agricultural and Forest Meteorology, 154-155: 55-66, 2012. De: doi:10.1016/j. agrformet.2011.08.003
• XIAO, X. et al. Cumulative soil water evaporation as function of depth and time. Vadose Zone J., 10(July): 1016-1022, 2011. doi:10.2136/vzj2010.0070.
• ZVOMUYA, F. et al. Surface Albedo and Soil Heat Flux Changes Following Drilling Mud Application to a Semiarid, Mixed-Grass Prairie. Soil Sci. Soc. Am. J., 72(5): 1217-1225, 2008. doi:10.2136/sssaj2007.0430.
Descargas
Publicado
Cómo citar
Licencia
Derechos de autor 2014 Armando López Santos, Alejandro Zermeño González, José Luis González Barrios, Guillermo González Cervantes, Martín Cadena Zapata, Santos Gabriel Campos Magaña
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)