Cultivo de tejidos vegetales y mutagénesis inducida: una estrategia para el desarrollo de plantas tolerantes a salinidad

Autores/as

DOI:

https://doi.org/10.33064/iycuaa2022853315

Palabras clave:

Mutación, estrés salino, estrés abiótico, cultivo in vitro, NaCl, selección in vitro

Resumen

La salinidad es uno de los principales factores que causa pérdidas en los cultivos hasta un 50%, lo cual pone en riesgo la seguridad alimentaria mundial. Durante la evolución, las plantas han adquirido mecanismos de defensa, los cuales, son regulados por genes específicos cuya principal función es contrarrestar el daño por salinidad. Es necesaria la variabilidad genética en los cultivos para que se presenten genotipos tolerantes al estrés. Una de las estrategias que se puede emplear para encontrar tolerancia es la combinación de mutagénesis y cultivo de tejidos vegetales, ya que se producen miles de plantas en espacios reducidos y periodos cortos, además, con el uso de agentes selectivos como el NaCl pueden obtenerse plantas tolerantes a salinidad. La presente revisión abordará tópicos relacionados con el cultivo de tejidos vegetales, la mutagénesis inducida y la combinación de ambos como estrategias para obtención de plantas tolerantes a salinidad de interés agrícola.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Andrés Adrián Urias-Salazar, Universidad Autónoma de Tamaulipas

Facultad de Ingeniería y Ciencias. Centro Universitario Adolfo López Mateos

Wilberth Alfredo Poot-Poot, Universidad Autónoma de Tamaulipas

FORMACIÓN ACADÉMICA

Lic. Química Industrial. Universidad Autónoma de Yucatán.

Maestría en Ciencias en Ingeniería Bioquímica en el Instituto Tecnológico de Mérida Yucatán.

Doctorado en Ciencias y Biotecnología de Plantas en el Centro de Investigación Científica de Yucatán.

Posdoctorado en el instituto de Biotecnología y Ecología Aplicada de la Universidad Veracruzana.

Profesor de tiempo completo de la Facultad de Ingeniería y Ciencias de la Universidad Autónoma de Tamaulipas.

Integrante del Cuerpo Académico Sistemas de Producción de Frutales y Hortalizas evaluado como en consolidación por la Dirección de Superación Académica.

Actualmente es responsable del Laboratorio de Biotecnología de la Facultad de Ingeniería y Ciencias de la Universidad Autónoma de Tamaulipas.

Miembro de Sistema Nacional de Investigadores nivel 1 (SNI 1)

Correo electrónico: wpoot@docentes.uat.edu.mx

Benjamín Abraham Ayil-Gutiérrez, Instituto Politécnico Nacional

Centro de Biotecnología Genómica

Ma. Teresa De Jesús Segura-Martínez, Universidad Autónoma de Tamaulipas

Facultad de Ingeniería y Ciencias. Centro Universitario

Citas

• AbdalGaleel, M. M., Sarhan, A. Z., Soliman, A. S., El Gohary, A. E., & Rayan, A. O. (2018). Effect of EMS mutagen on induction of salinity resistance of in vitro Jojoba Simmondsia chinensis L. Bioscience Research, 15(4): 4548-4558.

• AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., & Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in plant science, 7, 276. doi: org/10.3389/fpls.2016.00276.

• Adolf, V. I., Jacobsen S. E. & Shabala S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental, Botany 92:43-54. doi: 10.1016/j.envexpbot.2012.07.004.

• Aklilu, E. (2021). Review on forward and reverse genetics in plant breeding. All Life, 14(1), 127-135. doi: org/10.1080/26895293.2021.1888810.

• Akin-Idowu, P. E., Asiedu, R., Maziya-Dixon, B., Odunola, A., & Uwaifo, A. (2009). Effects of two processing methods on some nutrients and anti-nutritional factors in yellow yam (Dioscorea cayenensis). African Journal of Food Science, 3(4), 086-093. https://hdl.handle.net/10568/90210.

• Argentel Martínez, L., Fonseca Reyna, I., Garatuza Payán, J., Yépez González, E., & González Aguilera, J. (2017). Efecto de la salinidad en callos de variedades de trigo durante el cultivo in vitro. Revista mexicana de ciencias agrícolas, 8(3), 477-488. doi: org/10.29312/remexca.v8i3.25.

• Bado, S., Rafiri, M. A., El-Achouri, K., Sapey, E., Niele, S., Ghanim, A. M. A., Forster, B. P., & Laimer, M. (2016). In vitro methods for mutation induction in potato (Solanum tuberosum L.). African Journal of Biotechnology, 15(39), 2132-2145. doi: 10.5897/AJB2016.15571.

• Bolívar-González, A., Valdez-Melara, M., & Gatica-Arias, A. (2018). Responses of Arabica coffee (Coffea arabica L. var. Catuaí) cell suspensions to chemically induced mutagenesis and salinity stress under in vitro culture conditions. In Vitro Cellular & Developmental Biology-Plant, 54(6), 576-589. doi: 10.1007/s11627-018-9918-x.

• DeRose-Wilson, L., & Gaut, B. S. (2011). Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS One, 6(8), e22832. doi: org/10.1371/journal.pone.0022832.

• Espinosa-Ruiz, A., Belles J. M., Serrano R, & Culianez-MacIa F. A. (1999). Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. The Plant Journal, 20: 529-539. doi: 10.1046/j.1365-313x.1999.00626.x.

• Flowers T. J., & T. Colmer, D. (2008). Salinity tolerance in halophytes. New Phytologist. 179:945-963. doi: org/10.1111/j.1469-8137.2008.02531.x.

• Gandonou, C. B., Errabii, T., Abrini, J., Idaomar, M., & Senhaji, N. S. (2006). Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell, Tissue and Organ Culture, 87(1), 9-16. doi: 10.1007/s11240-006-9113-3.

• George, E. F., & Debergh, P. C. (2008). Micropropagation: Uses and Methods. In: George E, F, Hall M, A, & De KlerK G. J., (Eds) Plant propagation by tissue culture 3rd Edition, Springer pp. 29-64.

• Gulati, D., Dhingra, H. R., Sangwan, P., Pahuja, S. K., & Singh, S. (2016). Ethyl methane sulphonate (EMS) mediated changes in callus growth of clusterbean (Cyamopsis tetragonoloba L.) raised under saline conditions. International Journal of Agriculture, Environment and Biotechnology, 9(6), 909-916. doi: 10.5958/2230-732X.2016.00118.2.

• Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., ... & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi: 10.3390/antiox9080681.

• Holme, I. B., Gregersen, P. L., & Brinch-Pedersen, H. (2019). Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Frontiers in Plant Science, 10, 1468. doi: org/10.3389/fpls.2019.01468.

• Huang, H., Wei, Y., Zhai, Y., Ouyang, K., Chen, X., & Bai, L. (2020). High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia cadamba). Scientific reports, 10(1), 1-10. doi: 10.1038/s41598-020-61612-z.

• Jain, S. M. & P. Suprasanna. 2011. Induced mutations for enhancing nutrition and food production. Gene Conserve. 40: 201-215.

• Jauhar, P. P. (2006). Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges, Crop Science. 46(1), 1841-1859. doi: 10.2135/cropsci2005.07-0223.

• Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha M, S., Saleem, M, H., Adil, M., Heidari, P., & Chen J, T. (2020). An overview of hazardous impacts of soil salinity in crops,tolerance mechanisms, and ameliorationthrough Selenium supplementation. International Journal of Molecular Sciences, 21: 148. doi: org/10.3390/ijms21010148.

• Kodym, A. & R. Afza. 2008. Physical and Chemical Mutagenesis. Springer Link, 236:189-203. doi: 10.1385/1-59259-413-1:189.

• Krupa-Małkiewicz, M., Kosatka, A., Smolik, B., & Sędzik, M. (2017). Induced mutations through EMS treatment and in vitro screening for salt tolerance plant of Petunia× atkinsiana D. Don. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 190-196. doi: 10.15835/nbha45110578.

• Kumar, S. P., & Kumari, B. D. (2021). Impact of Ethyl Methane Sulphonate Mutagenesis in Artemisia vulgaris L. under NaCl Stress. BioTech, 10(3), 18.

• Li, L., Peng, Z., Mao, X., Wang, J., Li, C., Chang, X., & Jing, R. (2021). Genetic insights into natural variation underlying salt tolerance in wheat. Journal of Experimental Botany, 72(4), 1135-1150. doi: org/10.3390/biotech10030018.

• Martirena R, A., Veitía R, N., Rodríguez G, L., Collado L, R., Rodríguez T, D., Rivero Q, L., & Ramírez-López, M. (2019). Efecto de diferentes explantes irradiados en la regeneración in vitro de frijol común (Phaseolus vulgaris L.) CULTIVAR" ICA Pijao". Acta Biológica Colombiana, 24(1), 13-25. doi: org/10.15446/abc.v24n1.70422.

• Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. doi: org/10.3390/horticulturae3020030.

• Mullins, E., Bresson, J. L., Dalmay, T., Dewhurst, I. C., Epstein, M. M., Firbank, L. G., … & Rostoks, N. (2021). In vivo and in vitro random mutagenesis techniques in plants. EFSA Journal, 19(11), e06611. doi: org/10.2903/j.efsa.2021.6611.

• Munns, R. & M. Tester. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59:651-81.

• Nakayama, H., Yoshida, K., & Shinmyo, A. (2004). Yeast plasma membrane Ena1p ATPase alters alkali‐cation homeostasis and confers increased salt tolerance in tobacco cultured cells. Biotechnology and bioengineering, 85(7), 776-789. doi: 10.1002/bit.20021.

• Nikam, A. A., Devarumath, R. M., Ahuja, A., Babu, H., Shitole, M. G., & Suprasanna, P. (2015). Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.). The Crop Journal, 3(1), 46-56. doi: org/10.1080/09553002.2022.2024291.

• Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment, 30(1), 1-16. doi: org/10.1080/13102818.2015.1087333.

• Orosco-Alcalá, B. E., Núñez-Palenius, H. G., Pérez-Moreno, L., Valencia-Posadas, M., Trejo-Téllez, L. I., Díaz-Serrano, F. R., & Abraham-Juárez, M. R. (2018). Tolerancia a salinidad en plantas cultivadas: una visión agronómica. Agroproductividad, 11(7).

• Oseni, O. M., Pande, V., & Nailwal, T. K. (2018). A review on plant tissue culture, a technique for propagation and conservation of endangered plant species. International journal of current microbiology and applied sciences, 7(7), 3778-3786. doi: org/10.20546/ijcmas.2018.707.438.

• Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environmental and Experimental Botany, 71(1), 89-98. doi: 10.1016/j.envexpbot.2010.10.021.

• Rao, N., Lawson, E. T., Raditloaneng, W. N., Solomon, D., & Angula, M. N. (2019). Gendered vulnerabilities to climate change: insights from the semi-arid regions of Africa and Asia. Climate and Development, 11(1), 14-26. doi: org/10.1080/17565529.2017.1372266.

• Ricroch, A. E., Guillaume-Hofnung, M., & Kuntz, M. (2018). The ethical concerns about transgenic crops. Biochemical Journal, 475:803-811. doi: 10.1042/BCJ20170794.

• Roy, S. J., Negrão, S., & Tester, M. 2014. Salt resistant crop plants. Current Opinion in Biotechnology, 26: 115-124. doi: org/10.1016/j.copbio.2013.12.004.

• Ruan, C. J., da Silva, J. A. T., Mopper, S., Qin, P., & Lutts, S. (2010). Halophyte improvement for a salinized world. Critical Reviews in Plant Sciences, 29(6), 329-359. doi: org/10.1080/07352689.2010.524517.

• Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2), 123-131.

• Singh, M., Nara, U., Kumar, A., Choudhary, A., Singh, H., & Thapa, S. (2021). Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology, 19(1), 1-18. doi: 10.1186/s43141-021-00274-4.

• Su, Y. H., Tang, L. P., Zhao, X. Y., & Zhang, X. S. (2021). Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology, 63(1), 228-243. doi: org/10.1111/jipb.12972.

• Suprasanna, S. & Mohan J. S. 2017. Mutant resources and mutagenomics in crop plants. Emirates Journal of Food and Agriculture, 651-657.

• Suzuki, K., Costa, A., Nakayama, H., Katsuhara, M., Shinmyo, A., & Horie, T. (2016). OsHKT2; 2/1-mediated Na+ influx over K+ uptake in roots potentially increases toxic Na+ accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress. Journal of plant research, 129(1), 67-77. doi: 10.1007/s10265-015-0764-1.

• Talebi, A. B., Talebi, A. B., & Shahrokhifar, B. (2012). Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. American Journal of Plant Sciences, 3, 1661-1665.

• Tandon P. & S. Kumaria. (2005). Prospects of plant conservation biotechnology in India with special reference to northeastern region. In: P. Tandon, M. Sharma, R. Swarup. (eds) Biodiversity: status and prospects. Narosa Publishing House, New Delhi, pp: 79-92.

• Venema, K., Quintero, F. J., Pardo, J. M., & Donaire, J. P. (2002). The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. Journal of Biological Chemistry, 277(4), 2413-2418.

• Viana, V. E., Pegoraro, C., Busanello, C., & Costa de Oliveira, A. (2019). Mutagenesis in rice: the basis for breeding a new super plant. Frontiers in plant science, 10, 1326. doi: org/10.3389/fpls.2019.01326.

• Viñas, M. & Jiménez V. M. (2011). Factores que influyen en la embriogénesis somática in vitro de palmas (Arecaceae). Revista Colombiana de Biotecnología, 13(3), 229-242.

• Wang, S., Cao, M., Ma, X., Chen, W., Zhao, J., Sun, C., Tan, L., & Liu, F. (2017). Integrated RNA sequencing and QTL mapping to identify candidate genes from Oryza rufipogon associated with salt tolerance at the seedling stage. Frontiers in plant science, 8, 1427. doi: 10.3389/fpls.2017.01427.

• Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 129(4), 653-673.

• Yaycili, O., & Alikamanoğlu, S. (2012). Induction of salt-tolerant potato (Solanum tuberosum L.) mutants with gamma irradiation and characterization of genetic variations via RAPD-PCR analysis. Turkish Journal of Biology, 36(4), 405-412. doi: 10.3906/biy-1110-14.

• Zhang, J. L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis research, 115(1), 1-22. doi: 10.1007/s11120-013-9813-6.

• Zorb, C., Geilfus, C. M. & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21(1), 31-38. doi: org/10.1111/plb.12884.

Descargas

Publicado

2022-04-30

Número

Sección

Revisiones Científicas

Categorías