This is an outdated version published on 2020-01-31. Read the most recent version.

Detoxification enzymes associated with the resistance of the yellow aphid (Melanaphis sacchari) to insecticides in central region of Guanajuato state, Mexico

Authors

DOI:

https://doi.org/10.33064/iycuaa2020792921

Keywords:

Melanaphis sacchar, resistance, insecticides, enzymes, detoxificative, organophosphates

Abstract

The yellow aphid (Melanaphis sacchari) considered the most devastating pest in sorghum cultivation, and it has spread throughout most of the mexican territory causing low yields, especially in the places with the highest agricultural production. In the state of Guanajuato, it has caused severe damage, and due to the importance of the crop and the harm generated, it has become a serious problem. Its control is based mainly on the chemical methods, which can cause the development of resistance to the different active ingredients used for its control. For this reason, the objective of the present work was to quantify the activity of five detoxifying enzymes in samples of insect collected in 13 municipalities of the state of Guanajuato. The enzyme activities that were most frequently detected were α and β-Esterases, as well as oxidases.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Enrique García-Burgos, Universidad Autónoma Agraria Antonio Narro

Maestría en Ciencias en Parasitología Agrícola

Jerónimo Landeros-Flores, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

Ernesto Cerna-Chávez, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

Yisa María Ochoa-Fuentes, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

Luis Alberto Aguirre-Uribe, Universidad Autónoma Agraria Antonio Narro

Departamento de Parasitología

Luis Patricio Guevara-Acevedo, Instituto Tecnológico de Roque

Guanajuato, México

Gilberto Rodríguez-Pérez, Instituto Tecnológico de Roque

Celaya, Guanajuato

References

• Bass, C., & Field, L. M. (2011). Gene amplification and insecticide resistance. Pest Management Science, 67(8), 886-890. doi:10.1002/ps.2189
• Bisset, J. A. (2002). Uso correcto de insecticidas: Control de la resistencia. Revista Cubana de Medicina Tropical, 54(3), 202-219.
• Blackman, R. L., & Eastop, V. F. (2000). Aphids On The World’s Crops: An Identification and Information Guide (2° ed.). John Wiley & Sons Ltd.
• Brogdon, W. G. (1988). Microassay of acetylcholinesterase activity in small portions of single mosquito homogenates. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology, 90(1), 145-150.
• Brogdon, W. G., & Barber, A. M. (1990). Microplate assay of glutathione S-transferase activity for resistance detection in single-mosquito triturates. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 96(2), 339-342.
• Brogdon, W. G., McAllister, J. C., & Vulule, J. (1997). Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistence. Journal of the American Mosquito Control Association, 13(3), 233-237.
• Clark, J. M., Scott, J. G., Campos, F., & Bloomquist, J. R. (1995). Resistance to avermectins: Extent, mechanisms, and management implications. Annual Review of Entomology, 40, 1-30.
• Comité Estatal de Sanidad Vegetal de Guanajuato. (2015). Reporte de actividades de la campaña contra pulgón amarillo del sorgo. Recuperado el 25 de febrero 2018, de www.cesaveg.org.mx/new/manual_guia%20para_el_manejo_de_pulgon_amarillo_del_sorgo.pdf
• Criniti, A., Mazzoni, E., Cassanelli, S., Cravedi, P., Tondelli, A., Bizzaro, D., & Manicardi, G. C. (2008). Biochemical and molecular diagnosis of insecticide resistance conferred by esterase, MACE, kdr and super-kdr based mechanisms in Italian strains of the peach potato aphid, Myzus persicae (Sulzer). Pesticide Biochemistry and Physiology, 90(3), 168-174.
• Flores, A. E., Grajales, J. S., Salas, I. F., García, G. P., Becerra, M. H., Lozano, S., Brogdon, W. G., Beaty, B. (2006). Mechanisms of insecticide resistance in field opulations of Aedes aegypti (L.) from Quintana Roo, Southern Mexico. Journal of the American Mosquito Control Association, 22(4), 672-677.
• Guerra Pimentel, M. A., D’Antonino Faroni, L. R., Duarte Batista, M., & Da Silva, F. H. (2008). Resistance of stored-product insects to phosphine. Pesquisa Agropecuária Brasileira, 43(12), 1671-1676.
• Hernández-Bautista, O., Arredondo-Pérez, M. A., Cerna-Chávez, E., Ochoa-Fuentes, Y. M., & Navarro-Campos, F. E. (2016). Cuantificación de enzimas detoxificativas en pulgón amarillo del sorgo (Melanaphis sacchari) en Saltillo, México. Revista de Ciencias Naturales y Agropecuarias, 3(7), 5-12.
• Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253.
• Montella, I. R., Martins, A. J., Viana-Medeiros, P. F., Lima, J. B., Braga, I. A., & Valle, D. (2007). Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. The American Journal of Tropical Medicine and Hygiene, 77(3), 467-477.
• Oakeshott, J. G., Claudianos, C., Campbell, P. M., Newcomb, R. D., & Russell, R. J. (2005). Biochemical genetics and genomics of insect esterases. Comprehensive Molecular Insect Science, 5, 309-381.
• Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2012). Directrices sobre la prevención y manejo de la resistencia de los plaguicidas. Recuperado el 28 de febrero 2018, de www.fao.org/3/a-bt561s.pdf
• Pasteur, N., & Raymond, M. (1996). Insecticide resistence genes in mosquitoes: Their mutations, migration and selection in field populations. Journal of Heredity, 87(6), 444-449.
• Peña Martínez, R., Muñoz Viveros, A. L., Marín Jarillo, A., Bujanos Muñiz, R., Tamayo Mejía, F., Luévano Borroel, J., Ibarra, J. E. (2017). Guía ilustrada para la identificación de los pulgones (Hemiptera: Aphididae) de los cereales en México (p.59). Fundación Guanajuato Produce A. C.
• Ponce-Garcia, G., Badii, M., Roberto, M., & Flores, A. E. (2009). Esterases in Aedes albopictus (Skuse) from northeastern Mexico. Southwestern Entomologist, 34(4), 477-484.
• Rodríguez, M. M., Bisset, J. A., Molina, D., Díaz, C., & Soca, L. A. (2001). [Adaptation of microtitration plate methods for quantification of the activity of esterases and glutathione-s-transferase in Aedes aegypti]. Revista Cubana de Medicina Tropical, 53(1), 32-36.
Rodríguez-del-Bosque, L. A., & Terán, A. P. (2015). Melanaphis sacchari (Hemiptera: Aphididae): A new sorghum insect pest in Mexico. Southwestern Entomologist, 40(2), 433-434.
• Rott, P., Mirkov, T. E., Schenck, S., & Girard, J. C. (2007). Recent advances in research on Sugarcane yellow leaf virus, the causal agent of sugarcane yellow leaf. Proceedings of the International Society of Sugar Cane Technologists, 26, 968-977.
• Servicio de Información Agroalimentaria y Pesquera. (2017). Avance de siembras y cosechas. Resumen nacional por cultivo [Base de datos]. Recuperado en julio de 2018, de http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do
• Singh, B. U., Padmaja, P. G., & Seetharama, N. (2004). Biology and management of the sugarcane aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae), in sorghum: a review. Crop Protection, 23(9), 739-755.
• Vontas, J. G., Small, G. J., & Hemingway, J. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. The Biochemical Journal, 357(Pt 1), 65-72.

Published

2020-01-31

Versions

Issue

Section

Artículos de Investigación