Problemas y soluciones en el diseño de reactores enzimáticos

  • Luis Eduardo Ceballos Camargo Universidad Autónoma de Coahuila
  • Lorena Farías Cepeda Universidad Autónoma de Coahuila
  • Lucero Rosales Marines Universidad Autónoma de Coahuila
Palabras clave: reactores enzimáticos, diseño de reactores, reactores de membrana, biotecnología, transferencia de masa

Resumen

Los reactores enzimáticos utilizan como catalizador una enzima durante el proceso de reacción. Han recibido atención tanto en el ámbito de investigación como industrial ya que son amigables con el medio ambiente y tienen aplicaciones tanto en la industria química como alimentaria, farmacéutica, biotecnológica, entre otras. En la presente revisión se analizan los problemas más comunes en el diseño de reactores enzimáticos, así como las soluciones reportadas y el tipo de operación.

Biografía del autor/a

Luis Eduardo Ceballos Camargo, Universidad Autónoma de Coahuila

Departamento de Ingeniería Química, F acultad de Ciencias Químicas

Lorena Farías Cepeda, Universidad Autónoma de Coahuila

Departamento de Ingeniería Química, F acultad de Ciencias Químicas

Lucero Rosales Marines, Universidad Autónoma de Coahuila

Departamento de Ingeniería Química, F acultad de Ciencias Químicas

Citas

• ABBOTT, M. S. R. et al. Reduced power consumption compared to a traditional stirred tank reactor (STR) for enzymatic saccharification of alpha-cellulose using oscillatory baffled reactor (OBR) technology. Chemical Engineering Research and Design, 92(10): 1969-1975, 2014.
• AGHBOLAGHY, M. y KARIMI, A. Simulation and optimization of enzymatic hydrogen peroxide production in a continuous stirred tank reactor using CFD–RSM combined method. Journal of the Taiwan Institute of Chemical Engineers, 45(1): 101-107, 2014.
• ANYANWU, C. N. et al. A design algorithm for batch stirred tank transesterification reactors. Energy Conversion and Management, 62, 40-46, 2012.
• BÜHLER, R. M. M. et al. Monascus pigment production in biorreactor using a co-product of biodiesel as substrate. Ciência e Tecnologia de Alimentos, 33(1): 9-13, 2013.
• CARRASCO, A. K. Inmovilización de renina sobre la membrana de cáscara de huevo: Potencial uso como biorreactor. Tesis. Universidad de Chile, Facultad de Ciencias Veterinarias y Pecuarias. 2015.
• CHERRY, J. R. y FIDANTSEF, A. L. Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 14(4): 438-443, 2003.
• DEMARCHE, P. et al. Harnessing the power of enzymes for environmental stewardship. Biotechnology Advances, 30(5): 933-953, 2012.
GASPARINI, G. et al. Scaling Up Biocatalysis Reactions in Flow Reactors. Organic Process Research & Development, 16(5): 1013-1016, 2012.
• GHORBANPOUR KHAMSEH, A. A. y MICCIO, M. Comparison of batch, fed-batch and continuous well- mixed reactors for enzymatic hydrolysis of orange peel wastes. Process Biochemistry, 47(11): 1588-1594, 2012.
• HAMA, S. et al. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: An engineering approach to separation of hydrophilic impurities. Bioresource Technology, 135(0): 417-421, 2013.
• JARAMILLO, R. et al. Efecto de diferentes concentraciones de fructosa sobre la producción de celulosa bacteriana en cultivo estático. Revista Colombiana de Ciencia Animal, 5(1): 116-130, 2013.
• KIRK, O. et al. Industrial enzyme applications. Current Opinion in Biotechnology, 13(4): 345-351, 2002.
• LAU, S. Y. et al. Conceptual design and simulation of a plant for the production of high purity (S)-ibuprofen acid using innovative enzymatic membrane technology. Chemical Engineering Journal, 166(2): 726-737, 2011.
• PANKE, S. y WUBBOLTS, M. G. Enzyme technology and bioprocess engineering. Current Opinion in Biotechnology, 13(2): 111-116, 2002.
• RIOS, G. M. et al. Progress in enzymatic membrane reactors–a review. Journal of Membrane Science, 242(1-2): 189-196, 2004.
• SASTRE, E. Diseño de un biorreactor para la obtención de ácido glicérico por fermentación bacteriana de glicerol. Tesis. Escola Tècnica Superior d’Enginyeria Industria de Barcelona–Enginyeria Química. 2015.
• SCHMID, A. et al. The use of enzymes in the chemical industry in Europe. Current Opinion in Biotechnology, 13(4): 359-366, 2002.
• SING LONG, W. et al. Enzyme kinetics of kinetic resolution of racemic ibuprofen ester using enzymatic membrane reactor. Chemical Engineering Science, 60(18): 4957-4970, 2005.
• STANISZEWSKI, M. Influence of transport properties of membrane for yield of a reaction producing weak acid in an enzymatic membrane reactor. Desalination, 262(1-3): 260-266, 2010a.
• STANISZEWSKI, M. Steady states of an enzymatic membrane reactor with product retention for a system of non-cooperating enzymes-model predictions. Desalination, 261(1–2): 80-88, 2010b.
• SZÉKELY, E. et al. Kinetic enzymatic resolution in scCO2-Design of continuous reactor based on batch experiments. The Journal of Supercritical Fluids, 79(0): 127-132, 2013.
• THOMAS, S. M. et al. Biocatalysis: applications and potentials for the chemical industry. Trends in Biotechnology, 20(6): 238-242, 2002.
• VAN BEILEN, J. B. y LI, Z. Enzyme technology: an overview. Current Opinion in Biotechnology, 13(4): 338-344, 2002.
• ZAINAL ALAM, M. N. H. et al. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin. Industrial & Engineering Chemistry Research, 50(19): 11252-11258, 2011.
• ZAKS, A. Industrial biocatalysis. Current Opinion in Chemical Biology, 5(2): 130-136, 2001.
• ZHANG, Z. et al. Hybrid organic–inorganic monolithic enzymatic reactor with SBA-15 nanoparticles incorporated. Talanta, 119(0): 485-491, 2014.
Publicado
2016-04-30
Sección
Revisiones Científicas