Efecto de los crioprotectores en la morfología y pérdida iónica en yemas axilares de vid cv. `Flame Seedless´ crioconservadas

Autores/as

  • María Fernanda Lazo Javalera Centro de Investigación en Alimentación y Desarrollo, A. C.
  • Karen Rosalinda Astorga Cienfuegos Centro de Investigación en Alimentación y Desarrollo, A. C.
  • Martín Ernesto Tiznado Hernández Centro de Investigación en Alimentación y Desarrollo, A. C.
  • Irasema Vargas Arispuro Centro de Investigación en Alimentación y Desarrollo, A. C.
  • Miguel Ángel Martínez Tellez Centro de Investigación en Alimentación y Desarrollo, A. C.
  • María Auxiliadora Islas Osuna Centro de Investigación en Alimentación y Desarrollo, A. C.
  • Miguel Ángel Hernández Oñate Centro de Investigación en Alimentación y Desarrollo, A. C.
  • Marcos Edel Martínez Montero University of Ciego de Avila
  • Marisela Rivera Domínguez Centro de Investigación en Alimentación y Desarrollo, A. C.

DOI:

https://doi.org/10.33064/iycuaa201772220

Palabras clave:

Vitis vinifera L., PVS2, PVS3, glicerol, viabilidad, vitrificación

Resumen

La crioconservación ha revolucionado el campo de la biotecnología. Congelar en nitrógeno líquido (NL) preserva células por largo tiempo. En ese sentido, en este trabajo se evaluaron tres condiciones de crioconservación basados en la vitrificación de yemas de vid. Las yemas fueron sometidas a PVS2, PVS3 y glicerol por 0-420 min, y colocadas en NL por una hora. De modo posterior a cada tiempo de incubación se cuantificó la pérdida de iones como medida de viabilidad y se evaluó el daño mediante observación en estereoscopio. Basados en el porcentaje de viabilidad el mejor método fue empleando PVS3 (30% viabilidad), seguido de glicerol (25%) y PVS2 (<10%). Las imágenes de las yemas expuestas a PVS3 no muestran daño en el tejido, a diferencia de PVS2 y glicerol, los cuales resultaron insuficientes para preservar el tejido.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María Fernanda Lazo Javalera, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

Karen Rosalinda Astorga Cienfuegos, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

Martín Ernesto Tiznado Hernández, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

Irasema Vargas Arispuro, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

Miguel Ángel Martínez Tellez, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

María Auxiliadora Islas Osuna, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

Miguel Ángel Hernández Oñate, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

Marcos Edel Martínez Montero, University of Ciego de Avila

Plant Breeding Laboratory, Bioplants Center, University of Ciego de Avila. Carretera a Moron km 9, C. P. 69450, Ciego de Avila, Cuba.

Marisela Rivera Domínguez, Centro de Investigación en Alimentación y Desarrollo, A. C.

Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a La Victoria km 0.6, C. P. 83000, Hermosillo, Sonora, México.

Citas

Al-Zoubi, O. M., & Normah, M .N. (2015). Ultrastructural response of embryonic axes of Fortunella polyandra to dehydration and cryopreservation. Cryo-Letters, 36(6), 379-391. Recuperado de http://www.ingentaconnect.com/content/cryo/cryo/2015/00000036/00000006/art00004

Bayati, S., Shams-Bakhsh, M., & Moini, A. (2011). Elimination of Grapevine virus A (GVA) by cryotherapy and electrotherapy. En Journal of Agricultural Science and Technology, 13(3), 443-450. Recuperado de http://journals.modares.ac.ir/article_4713_c51d0b2176daee020a071e9d33f2aa51.pdf

Ben-Amar, A., Daldoul, S., Allel, D., Reustle, G., & Mliki, A. (2013). Reliable encapsulation-based cryopreservation protocol for safe storage and recovery of grapevine embryogenic cell cultures. En Scientia Horticulturae, 157, 32-38. doi:10.1016/j.scienta.2013.04.005

Benson, E. E. (2008). Cryopreservation Theory. En B. M. Reed (Ed.), Plant Cryopreservation: A Practical Guide (pp. 15-30). New York, NY: Springer.

Bhattacharya, S., & Prajapati, B. G. (2016). A review on cryoprotectant and its modern implication in cryonics. Asian Journal of Pharmaceutics, 10(3), 154-159. doi: 10.22377/ajp.v10i3.721

Chalker-Scott, L., Fuchigami, L. H., & Harber, R. M. (1989). Spectrophotometric measurement of leached phenolic compounds as an indicator of freeze damage. Journal of the American Society for Horticultural Science, 114, 315-319. Recuperado de https://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/25663/CHALKERSCOTTLINDA1989.pdf?sequence=1#page=74

Engelmann, F. (2012). Germplasm collection, storage and preservation. En A. Altman & P. M. Hazegawa (Eds.), Plant biotechnology and agriculture-Prospects for the 21st Century (pp. 255-268). Oxford, UK: Academic Press.

Ganino, T., Silvanini, A., Beghé, D., Benelli, C., Lambardi, M., & Fabbri, A. (2012). Anatomy and osmotic potential of the Vitis rootstock shoot tips recalcitrant to cryopreservation. Biologia Plantarum, 56(1), 78-82. doi: https://doi.org/10.1007/s10535-012-0019-0

González-Arnao, M. T., Panta, A., Roca, W. M., Escobar, R. H., & Engelmann, F. (2008). Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tissue and Organ Culture, 92(1), 1-13. doi: 10.1007/s11240-007-9303-7

González-Benito, M., Martín, C., & Vidal, J. (2009). Cryopreservation of embryogenic cell suspensions of the Spanish grapevine cultivars ‘Albariño’ and ‘Tempranillo’. Vitis, 48(3), 131-136. Recuperado de http://www.vitis-vea.de/admin/volltext/w1%2009%201298.pdf

Kaczmarczyk, A., Menon, A., Al-Hanbali, A., Funnekotter, B., Bunn, E., Phang, P. Y., & Mancera, R. L. (2012). Current issues in plant cryopreservation. En I. Katkov (Ed.), Current frontiers in cryobiology (592 pp.). Rijeka, Croatia: InTech Open Access Publisher. doi: 10.5772/32860

Kaviani, B. (2011). Conservation of plant genetic resources by cryopreservation. Australian Journal of Crop Science, 5(6), 778-800. Recuperado de http://www.cropj.com/kaviani_5_6_2011_778_800.pdf

Lazo-Javalera, M. F., Troncoso-Rojas, R., Tiznado-Hernández, M. E., Martínez-Téllez, M. A., Vargas-Arispuro, I., Islas-Osuna, M. A., & Rivera-Domínguez, M. (2016). Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds. SpringerPlus, 5, 453. doi: 10.1186/s40064-016-2081-0

Lin, L., Yuan, B., Wang, D., & Li, W. (2014). Cryopreservation of adventitious shoot tips of Paraisometrum Mileense by droplet vitrification. En CryoLetters, 35(1), 22-28. Recuperado de http://www.ingentaconnect.com/content/cryo/cryo/2014/00000035/00000001/art00004

Liu, G. T., Wang, J. F., Cramer, G., Dai, Z. W., Duan, W., Xu, H. G.,…, Li, S. H. (2012). Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biology, 12, 174. doi:10.1186/1471-2229-12-174

Makowska, Z., Keller, J., & Engelmann, F. (1999). Cryopreservation of apices isolated from garlic (Allium sativum L.) bulbils and cloves. En CryoLetters, 20(3), 175-182. Recuperado de http://www.documentation.ird.fr/hor/fdi:010018253

Marković, Z., Chatelet, P., Sylvestre, I., Kontić, J., & Engelmann, F. (2013). Cryopreservation of grapevine (Vitis vinifera L.) in vitro shoot tips. Open Life Sciences, 8(10), 993-1000. doi: 10.2478/s11535-013-0223-8

Martínez-Montero, M. E., Martínez, J., & Engelmann, F. (2008). Cryopreservation of sugarcane somatic embryos. CryoLetters, 29(3), 229-242. Recuperado de http://www.ingentaconnect. com/content/cryo/cryo/2008/00000029/00000003/art00006

Matsumoto, T., & Sakai, A. (2003). Cryopreservation of axillary shoot tips of in vitro-grown grape (Vitis) by a twostep vitrification protocol. Euphytica, 131(3), 299-304. doi: 10.1023/A:1024024909864

Mazur, P. (1960). Physical factors implicated in the death of microorganisms at subzero temperatures. Annals of the New York Academy of Sciences, 85, 610-629. doi: 10.1111/j.1749-6632.1960.tb49986.x

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15, 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Nishizawa, S., Sakai, A., Amano, Y., & Matsuzawa, T. (1993). Cryopreservation of asparagus (Asparagus-Officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Science, 91(1), 67-73. doi: 10.1016/0168-9452(93)90189-7

Pathirana, R., Mclachlan, A., Hedderley, D., Panis, B., & Carimi, F. (2016). Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification. Acta Physiologiae Plantarum, 38, 12. doi: 10.1007/s11738-015-2026-1

Pereira, C. S., & Hünenberger, P. H. (2006). Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. The Journal of Physical Chemistry B, 110(31), 15572-15581. doi: 10.1021/jp060789l

Pukacki, P. M., & Juszczyk, K. (2015). Desiccation sensitivity and cryopreservation of the embryogenic axes of the seeds of two Acer species. Trees, 29(2), 385-396. doi: 10.1007/s00468-014-1118-7

Sakai, A., & Engelmann, F. (2007). Vitrification, encapsulationvitrification

and droplet-vitrification: A review. CryoLetters, 28(3), 151-172. Recuperado de http://www.ingentaconnect. com/content/cryo/cryo/2007/00000028/00000003/art00002

Sakai, A., Kobayashi, S., & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports, 9(1), 30-33. doi: 10.1007/BF00232130

Shatnawi, M. A. (2011). Cryopreservation of Capparis spinosa shoot tips via vitrification, encapsulation dehydration and encapsulation vitrification. World Applied Sciences Journal, 15(3), 318-325. Recuperado de https://pdfs.semanticscholar.org/3391/bbb8d5458f05f7a1a7fe3bc57002925c94b0.pdf

Teixeira, A. S., González-Benito, M. E., & Molina-García, A. D. (2013). Glassy state and cryopreservation of mint shoot tips. Biotechnology Progress, 29(3), 707-717. doi:10.1002/btpr.1711

Vasanth, K., & Vivier, M. A. (2011). Improved cryopreservation procedure for long term storage of synchronised culture of grapevine. Biologia Plantarum, 55(2), 365-369. doi: 10.1007/s10535-011-0056-0

Volk, G. M., Harris, J. L., & Rotindo, K. E. (2006). Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology, 52(2), 305-308. doi: 10.1016/j.cryobiol.2005.11.003

Wang, B., Li, J. W., Zhang, Z. B., Wang, R. R., Ma, Y. L., Blystad, D. R.,…, Wang, Q. C. (2014). Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. Journal of Biotechnology, 184, 47-55. doi:

1016/j.jbiotec.2014.04.021

Zhai, Z., Wu, Y., Engelmann, F., Chen R., & Zhao, Y. (2003). Genetic stability assessments of plantlets regenerated from cryopreserved in vitro cultured grape and kiwi shoot-tips using rapd.

CryoLetters, 24(5), 315-322. Recuperado de http://www.ingentaconnect.

com/content/cryo/cryo/2003/00000024/00000005/art00006

Descargas

Publicado

2017-11-29

Número

Sección

Artículos de Investigación

Categorías