Degassing with NaCl: A method for increasing the mechanical properties of an aluminum alloy A 319

Authors

DOI:

https://doi.org/10.33064/iycuaa2020813228

Keywords:

degassing, morphology, porosity, homogenization, alloy, dissociation

Abstract

The effect of degassing with Halita-type NaCl on the morphology of the eutectic Si, the porosity and the mechanical properties of an A 319 Al alloy was analyzed. The fusion of the Al with the encapsulated salt was performed in an A/SS electric oven S. FREDERIKSEN at a temperature of 760 °C, for 30 minutes, in order to achieve an adequate homogenization of the salt in the Al alloy, gentle agitation of the liquid metal was made. The loads were pieces with dimensions of 5 cm long and 8 cm thick to introduce them into the melting pot. With the percentages of NaCl used (1, 2 and 3% of the weight of the alloy) in the metal bath, the most favorable modification was achieved with 3% and a particle size of less than 100 μm, the dissociation of the chlorine ion allowed the removal of H, the porosity decreased...

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Rubin Ortega-De la Rosa, Instituto Tecnológico de Zacatecas

Departamento de Metal-Mecánica

J. Edgardo Estrada-De la Torre, Instituto Tecnológico de Zacatecas

Departamento de Metal-Mecánica

Marco Alonso García-Romero, Instituto Tecnológico de Zacatecas

Departamento de Metal-Mecánica

Omar Rocha-Echavarría, Instituto Tecnológico de Zacatecas

Departamento de Metal-Mecánica

Pedro Antonio Bañuelos-Ruiz, Instituto Tecnológico de Zacatecas

Departamento de Metal-Mecánica

References

• Bäckerud, L., Chai, G., & Tamminen, J. (1990). Foundry alloys. En Solidification characteristics of aluminum alloys (Vol. 2, 266 pp.). Norway: Skanaluminium. • Chiesa, F., & Baril, J. (2016). A case for low pressure sand casting of aluminum. Metal Casting Design & Purchasing, 18(1), 36-40. Recuperado de http://content.yudu.com/web/y5b2/0A1snzj/MCDP.JanFeb.2016/html/index.html?page=38

• Haro-Rodríguez, S., Goytia-Reyes, R. E., Dwivedi, D. K., Baltazar-Hernández, V. H., Flores-Zúñiga, H., & Pérez-López, M. J. (2011). On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al–Si–Mg alloy. Materials & Design, 32(4), 1865-1871. doi: 10.1016/j.matdes.2010.12.012

• Hirsch, J. (2014). Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China, 24(7), 1995-2002. doi: 10.1016/S1003-6326(14)63305-7

• Martínez D., E. J., Cisneros G., M. A., Valtierra, S., & Lacaze, J. (2005). Effect of strontium and cooling rate upon eutectic temperatures of A319 aluminum alloy. Scripta Materialia, 52(6), 439-443. doi: 10.1016/j.scriptamat.2004.11.012

• Martínez, E., Lacaze, J., Cisneros, M., & Valtierra, S. (2004). Efecto del estroncio en las temperaturas de reacción eutécticas y microestructuras de solidificación de una aleación Al-Si tipo A319. Revista Facultad de Ingeniería -Universidad de Tarapacá, 12(2), 21-26. doi: 10.4067/s0718-13372004000200004

• Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A., & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1), 37-49. doi: 10.1016/s0921-

(99)00653-x

• Mo, D.-F., He, G.-Q., Hu, Z.-F., Liu, X.-S., & Zhang, W.-H. (2010). Effect of microstructural features on fatigue behavior in A319-T6 aluminum alloy. Materials Science and Engineering: A, 527(15), 3420-3426. doi: 10.1016/j.msea.2010.02.055

• Nampoothiri, J., Balasundar, I., Raj, B., Murty, B. S., & Ravi, K. R. (2018). Porosity alleviation and mechanical property improvement of strontium modified A356 alloy by ultrasonic treatment. Materials Science and Engineering: A, 724, 586-593. doi: 10.1016/j.msea.2018.03.069

• Onyia, C. W., Okorie, B. A., Neife, S. I., & Obayi, C. S. (2013). Structural modification of sand cast eutectic Al-Si alloys with sulfur/sodium and its effect on mechanical properties. World Journal of Engineering and Technology, 1(2), 9-16. doi:

4236/wjet.2013.12002

• Ravi, K. R., Pillai, R. M., Amaranathan, K. R., Pai, B. C., & Chakraborty, M. (2008). Fluidity of aluminum alloys and composites: A review. Journal of Alloys and Compounds, 456(1-2), 201-210. doi: 10.1016/j.jallcom.2007.02.038

• Sun, Y., Pang, S., Liu, X., Yang, Z., & Sun, G. (2011). Nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy. Transactions of Nonferrous Metals Society of China, 21(10), 2186-2191. doi: 10.1016/s1003-6326(11)60993-x

• Tenekedjiev, N., Mulazimoglu, H., Closset, B., & Gruzleski, J. (1995). Microstructures and thermal analysis of strontiumtreated aluminum-silicon alloys. US: American Foundrymen’s Society.

• Uribe Pérez, I., Velosa Pacheco, A. B., & Zabala Capacho, L. E. (2011). Fundamentos del daño por hidrógeno en los aceros. El hombre y la Máquina, 36, 123-142.

Published

2020-11-30 — Updated on 2020-11-30

Versions

Issue

Section

Artículos de Investigación

Categories