Analytical and numerical study of cracked specimens under tension load
DOI:
https://doi.org/10.33064/iycuaa2024914481Keywords:
ANSYS, crack length, FEM, SIF, stress fields, two-dimensionalAbstract
This work describes the analytical evaluation of the Stress Intensity Factor (SIF) for four specimens subjected to a stress of 15 MPa and a crack length of 25 mm. Subsequently, numerical simulations are performed using the software ANSYS® to obtain the SIF values for the analytically studied specimens. Additionally, the stress fields σx, σy, τxy, σMax, σMin and σVon Mises in the vicinity of the crack tip are shown. Subsequently, the percentage of variation of the analyses previously performed is calculated, with positive results in all cases (< 0.4 %). Therefore, it can be asserted that the use of the Finite Element Method (FEM) through the ANSYS® program is reliable for the solution of fracture problems. In addition, the numerical work performed can provide some guidelines to improve the estimation of the SIF in two-dimensional problems.
Downloads
Metrics
References
• De León, V., González, V. L., Rosete, J. C., & de León, N. (2018). Mecánica de materiales: Teoría y aplicaciones. Grupo Editorial Patria.
• Farahmand, B. (2001). Linear Elastic Fracture Mechanics (LEFM) and Applications. En Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints: Application of LEFM, EPFM, and FMDM Theory (pp. 52-117). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-1585-2_2
• German-Carcaño, J. M., Romero-Ángeles, B., Martínez-Reyes, J., Diaz-Léon, C., & Urriolagoitia-Sosa, G. (2019, septiembre). Corroboración numérica (MEF) del factor de intensidad de esfuerzo en una placa con grieta en el centro en Modo I de carga. Presentado en 14 Congreso Científico–Tecnológico de las Carreras de Ingeniería (Ime, Industrial e Itse), Ciudad de México, México. https://www.cuautitlan.unam.mx/memorias_cct.html
• Glodež, S., & Aberšek, B. (2020). The Life of Cracks: Theory and Application. Cambridge Scholars Publishing. Recuperado de https://books.google.com.mx/books?id=kLzxDwAAQBAJ
• Gómez, L. H. H., Calderón, G. U., Sosa, G. U., Pineda, J. M. S., Cruz, E. A. M., & García, J. F. G. (2009). Assessment of the structural integrity of cracked cylindrical geometries applying the EVTUBAG program. Revista Técnica de La Facultad de Ingeniería. Universidad Del Zulia, 32(3). Recuperado de https://produccioncientificaluz.org/index.php/tecnica/article/view/6676
• González-Velázquez, J. L. (2020). A Practical Approach to Fracture Mechanics. Elsevier Science. Recuperado de https://books.google.com.mx/books?id=8njhDwAAQBAJ
• Guo, W., Zhang, J., & Guo, W. (2021). Two-dimensional weight function of stress intensity factors for corner cracks emanating from a circular hole. Engineering Fracture Mechanics, 252, 107821. https://doi.org/10.1016/j.engfracmech.2021.107821
• Han, Z., Cheng, C., Yao, S., & Niu, Z. (2019). Determination of stress intensity factors of V-notch structures by characteristic analysis coupled with isogeometric boundary element method. Engineering Fracture Mechanics, 222, 106717. https://doi.org/10.1016/j.engfracmech.2019.106717
• Hellen, T. K. (1989). Virtual crack extension methods for non-linear materials. International Journal for Numerical Methods in Engineering, 28(4), 929-942. https://doi.org/10.1002/nme.1620280414
• Hibbeler, R. C. (2006). Mecanica de Materiales. Pearson Educación.
• Hiroshi, T. (1971). A note on the finite width corrections to the stress intensity factor. Engineering Fracture Mechanics, 3(3), 345-347. https://doi.org/10.1016/0013-7944(71)90043-9
• Jin, P., Liu, Z., Wang, X., & Chen, X. (2022). Three-Dimensional analysis of mixed mode Compact-Tension-Shear (CTS) Specimens: Stress intensity Factors, T-stresses and crack initiation angles. Theoretical and Applied Fracture Mechanics, 118, 103218. https://doi.org/10.1016/j.tafmec.2021.103218
• Kapp, J. A. Newman, J. C. y Underwood, J. H. (1980). A wide range stress intensity factor expression for the c-shaped specimen, Journal of Testing and Evaluation. Journal of Testing and Evaluation, 8(6), 314-317.
• Lancaster, J. (2005). The technical background. Engineering Catastrophes, 139-189. https://doi.org/10.1533/9781845690816.139
• Li, D., & Mao, Z. (2022). Experimental and numerical simulations on compound stress intensity factor of semi-elliptical cracks on the exchanger outer walls with inclined angles. Alexandria Engineering Journal, 61(7), 5065-5072. https://doi.org/10.1016/j.aej.2021.09.030
• Newman, J. C. (1981). Stress intensity factors and crack opening displacements for round compact specimens. International Journal of Fracture, 17.
• Newman, J. C., Aeronautics, U. States. N., Administration, S., & Center, L. R. (1971). An Improved Method of Collocation for the Stress Analysis of Cracked Plates with Various Shaped Boundaries. NASA Technical Note, D-6376.
• Nianga, J.-M., Mejni, F., Kanit, T., Imad, A., & Li, J. (2019). Mode I stress intensity factor and T-stress by exponential matrix method. Theoretical and Applied Fracture Mechanics, 103, 102287. https://doi.org/10.1016/j.tafmec.2019.102287
• Owen, D. R. J., & Fawkes, A. J. (1983). Engineering Fracture Mechanics: Numerical Methods and Applications. Pineridge Press.
• Paarmann, M., & Sander, M. (2020). Analytical determination of stress intensity factors in thick walled thermally loaded components. Engineering Fracture Mechanics, 235, 107125. https://doi.org/10.1016/j.engfracmech.2020.107125
• Perez, N. (2017). Linear-Elastic Fracture Mechanics. En Fracture Mechanics (pp. 79-130). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-24999-5_3
• Rybicki, E. F., & Kanninen, M. F. (1977). A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4), 931-938. https://doi.org/10.1016/0013-7944(77)90013-3
• Saito, K., Hirashima, T., Ma, N., & Murakawa, H. (2021). Characteristic-tensor method for efficient estimation of stress-intensity factors of three-dimensional cracks. Engineering Fracture Mechanics, 257, 108016. https://doi.org/10.1016/j.engfracmech.2021.108016
• Sun, C. T., & Jin, Z.-H. (2012). The Elastic Stress Field around a Crack Tip. Fracture Mechanics, 25-75. https://doi.org/10.1016/B978-0-12-385001-0.00003-1
• Surendran, M., Natarajan, S., Palani, G. S., & Bordas, S. P. A. (2019). Linear smoothed extended finite element method for fatigue crack growth simulations. Engineering Fracture Mechanics, 206, 551-564. https://doi.org/10.1016/j.engfracmech.2018.11.011
• Takaki, Y., & Gotoh, K. (2020). Approximate weight functions of stress intensity factor for a wide range shapes of surface and an embedded elliptical crack. Marine Structures, 70, 102696. https://doi.org/10.1016/j.marstruc.2019.102696
• Yakovlev, M. (2022). Stress intensity factors in the specimen with a surface semi-elliptical defect. Procedia Structural Integrity, 42, 1619-1625. https://doi.org/10.1016/j.prostr.2022.12.204
• Yuan, H., Liu, W. J., & Xie, Y. J. (2019). Mode-I stress intensity factors for cracked special-shaped shells under bending. Engineering Fracture Mechanics, 207, 131-148. https://doi.org/10.1016/j.engfracmech.2018.12.026
• Zhang, B., Xu, W., & Wu, X.-R. (2022). Weight function method and stress intensity factor for two unsymmetric through-thickness and quarter-elliptical corner cracks at circular hole. Engineering Fracture Mechanics, 264, 108361. https://doi.org/10.1016/j.engfracmech.2022.108361
• Zvyagin, A. V., Luzhin, A. A., Smirnov, N. N., Shamina, A. A., & Shamin, A. Y. (2021). Stress intensity factors for branching cracks in space structures. Acta Astronautica, 180, 66-72. https://doi.org/10.1016/j.actaastro.2020.12.007
Published
How to Cite
License
Copyright (c) 2024 Jesús Manuel German-Carcaño, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Daniel Maya-Anaya, Arturo Sánchez-Cervantes, Martín Iván Correa-Corona, Guillermo Manuel Urriolagoitia-Calderón
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)