Adsorption of heavy metals (Hg2+, Cu2+ y Ni2+) on CNT using Feed forward backprop and Elman backprop neural networks

Authors

DOI:

https://doi.org/10.33064/iycuaa2023894207

Keywords:

Gibbs energy, heavy metals, Artificial neuronal networks, Hyperchem, Gaussian, CNT

Abstract

In the present work, mono and multicomponent adsorption systems of heavy metals (Hg2+, Cu2+ y Ni2+) as adsorbates and carbon nanotubes (CNT) as adsorbents were studied. First, the thermodynamic and QSAR properties at 298.15 and 30815K were determined using computational simulation. Subsequently, Feedforward backprop and Elman backprop artificial neural networks were developed, where the network with the highest precision of the thermodynamic and QSAR properties was the Elman Backprop with the Logsig function using 5 and 3 neurons in the hidden layer at 298.15 and 308.15 K, finally, the networks had an r2 of 0.999, and a mean square error of 0.021, 0.024 and 0.214 respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

• Allred, A. (1961). Electronegativity values from thermochemical data. Journal of Inorganic and Nuclear Chemistry, 17(3-4), 215-221. doi: 10.1016/0022-1902(61)80142-5

• Arora, R. (2019). Adsorption of heavy metals–A review. Materials today: Proceedings, 18(7), 4745-4750. doi: 10.1016/j.matpr.2019.07.462

• Asfaram, A., Ghaedi, M., Ahmadi Azqhandi, M. H., Goudarzi, A., Hajati, S. (2017). Ultrasound-assisted binary adsorption of dyes onto Mn@ CuS/ZnS-NC-AC as a novel adsorbent: Application of chemometrics for optimization and modeling. Journal of Industrial and Engineering Chemistry, 54, 377-388. doi: 10.1016/j.jiec.2017.06.018

• Assefi, P., Ghaedi, M., Ansari, A., Habibi, M. H., & Momeni, M. S. (2014). Artificial neural network optimization for removal of hazardous dye Eosin Y from aqueous solution using Co2O3-NP-AC: Isotherm and kinetics study. Journal of Industrial and Engineering Chemistry, 20(5), 2905-2913. doi: 10.1016/j.jiec.2013.11.027

• Chairez, I., García-Peña, I., Cabrera, A. (2009). Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network. Journal of Process Control, 19(7), 1103-1110. doi: 10.1016/j.jprocont.2008.12.009

• Fiyadh, S., AlOmar, M., Jaafar, W. Z. B., AlSaadi, M. A., Fayaed, S. S., Koting, S. B., Lai, S. H., Chow, M. F., Ahmed, A. N., El-Shafie, A. (2019). Artificial neural network approach for modelling of mercury ions removal from water using functionalized CNTs with deep eutectic solvent. International Journal of Molecular Sciences, 20(17), 4206. doi: 10.3390/ijms20174206

• Ghaedi, A. M., Vafaei, A. (2017). Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review. Advances in Colloid and Interface Science, 245, 20-39. doi: 10.1016/j.cis.2017.04.015

• Gupta, S. S., Bhattacharyya, K. G. (2006). Adsorption of Ni(II) on clays. Journal of Colloid and Interface Science, 295(1), 21-32. doi: 10.1016/j.jcis.2005.07.073

• Kausar, A., Iqbal, M., Javed, A., Aftab, K., Bhatti, H. N., Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395-407. doi: 10.1016/j.molliq.2018.02.034

• Kermani, B. G., Schiffman, S. S., Nagle, H. T. (2005). Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors and Actuators B: Chemical, 110(1), 13-22. doi: 10.1016/j.snb.2005.01.008

• Khan, T., Binti A. M. T., Isa, M., Ghanim, A., Beddu, S., Jusoh, H., Iqbal, M. S., Ayele, G. T., Jami, M. S. (2020). Modeling of Cu (II) Adsorption from an aqueous solution using an artificial neural network (ANN). Molecules, 25(14), 3263. doi: 10.3390/molecules25143263

• Kumar, K. V., & Porkodi, K. (2009). Modelling the solid–liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chemical Engineering Journal, 148(1), 20-25. doi: 10.1016/j.cej.2008.07.026

• Meek, S. T., Teich-McGoldrick, S. l., Perry, J. J., Greathouse, J. A., Allendorf, M. D. (2012). Effects of polarizability on the adsorption of noble gases at low pressures in monohalogenated isoreticular metal–organic frameworks. The Journal of Physical Chemistry C, 116(37), 19765-19772. doi: 10.1021/jp303274m

• Morse, G., Jones, R., Thibault, J., Tezel, F. H. (2011). Neural network modelling of adsorption isotherms. Adsorption, 17(2), 303-309. doi: 10.1007/s10450-010-9287-1

• Pauletto, P. S., Dotto, G. l., Salau, N. P. (2020). Optimal artificial neural network design for simultaneous modeling of multicomponent adsorption. Journal of Molecular Liquids, 320(A), 114418. doi: 10.1016/j.molliq.2020.114418

• Rad, l. R., Anbia, M. (2021). Zeolite-based composites for the adsorption of toxic matters from water: A review. Journal of Environmental Chemical Engineering, 9(5), 106088. doi: 10.1016/j.jece.2021.106088

• Rozylo, J., Malinowska, I., Poniewaz, M. (1984). The influence of the specific surface area of adsorbent upon the optimization of the process of adsorption thin-layer chromatography. Journal of Liquid Chromatography, 7(14), 2697-2710. doi: 10.1080/01483918408067037

• Shahryari, Z., Mohebbi, A., Soltani Goharrizi, A., Forghani, A. A. (2013). Application of artificial neural networks for formulation and modeling of dye adsorption onto multiwalled carbon nanotubes. Research on Chemical Intermediates, 39(8), 3595- 3609. doi: 10.1007/s11164-012-0865-6

• Sun, Y., Zhou, S., Pan, S. Y., Zhu, S., Yu, Y., Zheng, H. (2020). Performance evaluation and optimization of flocculation process for removing heavy metal. Chemical Engineering Journal, 385, 123911. doi: 10.1016/j.cej.2019.123911

• Tanzifi, M., Hosseini, S. H., Kiadehi, A. D., Olazar, M., Karimipour, K., Rezaiemehr, R., Ali, I. (2017). Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: kinetic, isotherm and thermodynamic studies. Journal of Molecular Liquids, 244, 189-200. doi: 10.1016/j.molliq.2017.08.122

• Tanzifi, M., Yaraki, M. T., Kiadehi, A. D., Hosseini, S. H., Olazar, M., Bharti, A. K., Agarwal, S., Gupta, V. K., Kazemi, A. (2018). Adsorption of amido black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigation and artificial neural network modeling. Journal of Colloid and Interface Science, 510, 246-261. doi: 10.1016/j.jcis.2017.09.055

• Vardhan, K. H., Kumar, P. S., Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. doi: 10.1016/j.molliq.2019.111197

• Yildiz, S. (2017). Artificial neural network (ANN) approach for modeling Zn (II) adsorption in batch process. Korean Journal of Chemical Engineering, 34(9), 2423-2434. doi: 10.1007/s11814-017-0157-3

• Yunus, Z. M., Al-gheethi, A., Othman, N., Hamdan, R., Ruslan, N. N. (2022). Advanced methods for activated carbon from agriculture wastes: A comprehensive review. International Journal of Environmental Analytical Chemistry, 102(1), 134-158. doi: 10.1080/03067319.2020.1717477

• Zaimee, M. Z. A., Sarjadi, M. S., Rahman, M. l. (2021). Heavy metals removal from water by efficient adsorbents. Water, 13(19), 2659. doi: 10.3390/w13192659

Published

2023-05-31

Issue

Section

Artículos de Investigación

Categories