Surface improvement of AISI 316L steel using amorphous titanium nitride deposits by cathodic erosion technique

Authors

DOI:

https://doi.org/10.33064/iycuaa2021843133

Keywords:

316L steel; cathodic erosion (Sputtering); coating; surface engineering; hardness; electrical resistivity.

Abstract

AISI 316L stainless steel, due to its characteristics of corrosion resistance in alkaline environments, mechanical stability at high temperatures is attractive for various industries such as aeronautics, automotive, petrochemical, food, and even surgical instruments. However, when it is found in acidic environments rich in chlorides, it does not have sufficient protection against corrosion, which is detrimental to its mechanical properties. Therefore, amorphous titanium nitride coatings with low thicknesses have been used to improve its surface characteristics, such as increased surface hardness and electrical resistivity. The cathodic erosion synthesis method being a physical technique ensures high homogeneity, high adhesion to the substrate, and thickness control. Consequently, a hardness with values of 7.17 GPa was achieved, with a resistivity of 2.20E+09 ohm-square for T4, with a maximum thickness of ~1.7 µm.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Jorge Bertín Santaella-González, Universidad Veracruzana

Centro de Investigación en Micro y Nanotecnología

Ricardo Orozco-Cruz, Universidad Veracruzana

Instituto de Ingeniería, Unidad Anticorrosión

Julián Hernández-Torres , Universidad Veracruzana

Centro de Investigación en Micro y Nanotecnología

Leandro García-González, Universidad Veracruzana

Centro de investigación en Micro y Nanotecnología

References

• Bait, L., Azzouz, L., Madaoui, N., & Saoula, N. (2017). Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications. Applied Surface Science, 395, 72-77. doi: 10.1016/j.apsusc.2016.07.101

• Czettl, C., Thurner, J., & Schleinkofer, U. (2018). Knowledge based coating design of CVD TiN-TiBN-TiB2 architecture. International Journal of Refractory Metals and Hard Materials, 71, 330-334. doi: 10.1016/j.ijrmhm.2017.11.040

• Dhanaraj, R., Mohamed, S. B., Kamruddin, M., Kaviyarasu, K., & Manojkumar, P. A. (2021). Structural properties of TiN thin films prepared by RF reactive magnetron sputtering. Materials Today: Proceedings, 36(2), 146-149. doi: 10.1016/j.matpr.2020.02.668

• Domínguez-Crespo, M. A., Torres-Huerta, A. M., Rodríguez, E., González-Hernández, A., Brachetti-Sibaja, S. B., Dorantes-Rosales, H. J., & López-Oyama, A. B. (2018). Effect of deposition parameters on structural, mechanical and electrochemical properties in Ti/TiN thin films on AISI 316L substrates produced by r. f. magnetron sputtering. Journal of Alloys and Compounds, 746, 688-698. doi: 10.1016/j.jallcom.2018.02.319

• García-González, L., López-Huerta, F., Araujo-Pérez, D. J., Zamora-Peredo, L., Flores-Ramírez, N., Vásquez García, S. R., …Hernández-Torres, J. (2018). Effect of the temperature variation on the hardness and microstructure of TiSiNO coatings obtained by sputtering. IOP Conference Series: Materials Science and Engineering, 446. doi: 10.1088/1757-899X/446/1/012001

• Hernández Montiel, S., Hernández Torres, J., Araujo Pérez, D. J., Orozco Cruz, R., Morales Hernández, J., Zamora Peredo, L., & García González, L. (2021). Study of the variation of the voltage and time of the process in the anodizing of TiO2 with HCl. ECS Transactions, 101(1), 199-211. doi: 10.1149/10101.0199ecst

• Kant, R., Mittal, R., Kumar, C., Rana, B. S., Kumar, M., & Kumar, R. (2018). Fabrication and characterization of weldments AISI 304 and AISI 316 used in industrial applications. Materials Today: Proceedings, 5(9), 18475-18481. doi: 10.1016/j.matpr.2018.06.189

• Kearney, B. T., Jugdersuren, B., Culbertson, J. C., Desario, P. A., & Liu, X. (2018). Substrate and annealing temperature dependent electrical resistivity of sputtered titanium nitride thin films. Thin Solid Films, 661, 78-83. doi: 10.1016/j.tsf.2018.07.001

• Kumar, P., Bansal, D., Anuroop, Mehta, K., Kumar, A., Rangra, K., & Boolchandani, D. (2019). Optimization of titanium nitride film for high power RF MEMS applications. Journal of Electronic Materials, 48, 6431-6436. doi: 10.1007/s11664-019-07435-9

• Maytorena-Sánchez, A., Hernández-Torres, J., López-Huerta, F., Hernández-Campos, M. A., Zamora-Peredo, L., Pacio-Castillo, M., …García-González, L. (2021). Analysis of the hardness and tribological properties of grade 2 titanium using the thermal oxidation process at different temperatures. Materials Letters, 282, 2020-2022. doi: 10.1016/j.matlet.2020.128679

• Santaella-González, J. B., Garcia-Gonzalez, L., Araujo Pérez, D. J., Galvan-Martinez, R., Hernández-Torres, J., Cruz-Jáuregui, M. P., & Morales-Hernández, J. (2019). Microstructural analysis of W-doped TiO2 thin films deposited by sputtering. ECS Transactions, 94(1), 211–217. doi: 10.1149/09401.0211ecst

• Shukla, K., Rane, R., Alphonsa, J., Maity, P., & Mukherjee, S. (2017). Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L. Surface and Coatings Technology, 324, 167-174. doi: 10.1016/j.surfcoat.2017.05.075

• Uddin, G. M., Jawad, M., Ghufran, M., Saleem, M. W., Raza, M. A., Rehman, Z. U., … Waseem, B. (2019). Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing. The International Journal of Advanced Manufacturing Technology, 102(5–8), 1391-1404. doi: 10.1007/s00170-018-03244-2

• Yan, Z., Jiang, D., Gao, X., Hu, M., Wang, D., Fu, Y., … Weng, L. (2018). Friction and wear behavior of TiN films against ceramic and steel balls. Tribology International, 124, 61-69. doi: 10.1016/j.triboint.2018.03.031

• Yazıcı, M., Kovacı, H., Yetim, A. F., & Çelik, A. (2018). Structural, mechanical and tribological properties of Ti and TiN coatings on 316L stainless steel. Ceramics International, 44(12), 14195-14201. doi: 10.1016/j.ceramint.2018.05.022

Published

2021-10-31

How to Cite

Santaella-González, J. B., Orozco-Cruz, R., Hernández-Torres , J., & García-González, L. (2021). Surface improvement of AISI 316L steel using amorphous titanium nitride deposits by cathodic erosion technique. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (84). https://doi.org/10.33064/iycuaa2021843133

Issue

Section

Artículos de Investigación

Categories