Vector borne disease and climate change

Authors

  • Sergio Andrade Ochoa Instituto Politécnico Nacional
  • Karla Fabiola Chacón Vargas Instituto Politécnico Nacional
  • Blanca Estela Rivera Chavira Universidad Autónoma de Chihuahua
  • Luvia Enid Sánchez Torres Instituto Politécnico Nacional

DOI:

https://doi.org/10.33064/iycuaa201772229

Keywords:

insects, climate change, geographical distribution, vector-borne disease, public health, ecology

Abstract

Socioeconomic changes and health interventions have improved human health worldwide in recent decades. However, changes in the distribution of certain diseases occuring, due mainly to what is known as climate change, a consequence of the deterioration of our environment. One of the concerns arising from this, is the new redistribution or geolocation of Vector-Borne Diseases (VBD) as vectors that transmit them are finding new ecological niches in which to settle and multiply. The aim of this review was to compilate the scientific evidence on climate change and its effects on VBD.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Sergio Andrade Ochoa, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
Unidad Profesional Lázaro Cárdenas. Prolongación de Carpio y Plan de
Ayala s/n, Col. Santo Tomas, C. P. 11340, Delegación Miguel Hidalgo,
México, D. F., México.

Karla Fabiola Chacón Vargas, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
Unidad Profesional Lázaro Cárdenas. Prolongación de Carpio y Plan de
Ayala s/n, Col. Santo Tomas, C. P. 11340, Delegación Miguel Hidalgo,
México, D. F., México.

Blanca Estela Rivera Chavira, Universidad Autónoma de Chihuahua

Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua.
Circuito Universitario s/n, Campus Universitario II, C. P. 31170, Chihuahua,
Chihuahua, México

Luvia Enid Sánchez Torres, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
Unidad Profesional Lázaro Cárdenas. Prolongación de Carpio y Plan de
Ayala s/n, Col. Santo Tomas, C. P. 11340, Delegación Miguel Hidalgo,
México, D. F., México.

References

Abad-Franch, F., Diotaiuti, L., Gurgel-Gonçalves, R., & Gürtler,

R. E. (2013). Certifying the interruption of Chagas disease

transmission by native vectors: cui bono? The Memórias do

Instituto Oswaldo Cruz, 108(2), 251-254.

Banu, S., Hu, W., Hurst, C., & Tong, S. (2011). Dengue transmission

in the Asia‐Pacific region: impact of climate change and

socio-environmental factors. Tropical Medicine & International

Health, 16(5), 598-607.

Bouchard, C. et al. (2013). Harvested white-tailed deer as

sentinel hosts for early establishing Ixodes scapularis populations

and risk from vector-borne zoonoses in southeastern Canada.

Journal of Medical Entomology, 50(2), 384-393.

Campbell, L. P., Luther, C., Moo-Llanes, D., Ramsey, J. M., Danis-

Lozano, R., & Townsend Peterson, A. (2015). Climate change

influences on global distributions of dengue and chikungunya

virus vectors. Philosophical Transactions of the Royal Society B:

Biological, 370(1665), 20140135. doi: 10.1098/rstb.2014.0135

Ceballos, L. A., Piccinali, R. V., Marcet, P. L., Vazquez-Prokopec,

G. M., Cardinal, M. V., Schachter-Broide, J.,…Gurtler, R. E.

(2011). Hidden sylvatic foci of the main vector of Chagas

disease Triatoma infestans: Threats to the vector elimination

campaign? PLoS Neglected Tropical Diseases, 5(10), e1365.

doi: 10.1371/journal.pntd.0001365

Cerda Lorca, J., Valdivia, G., Valenzuela, M. T., & Venegas

L., J. (2008). Cambio climático y enfermedades infecciosas:

un nuevo escenario epidemiológico. Revista Chilena de

Infectología, 25(6), 447-452.

Chakravarti, A., Arora, R., & Luxemburger, C. (2012). Fifty years

of dengue in India. Transactions of the Royal Society of Tropical

Medicine and Hygiene, 106(5), 273-282.

Chen, S. C., & Hsieh, M. H. (2012). Modeling the transmission

dynamics of dengue fever: Implications of temperature effects.

Science of the Total Environment, 431, 385-391.

Coura, J. R. (2013). Chagas disease: control, elimination and

eradication. Is it possible? Memórias do Instituto Oswaldo Cruz,

(8), 962-967.

De La Rocque, S., Rioux, J. A., & Slingenbergh, J. (2008). Climate

change: effects on animal disease systems and implications

for surveillance and control. Revue Scientifique et Technique

(International Office of Epizootics), 27(2), 339-354.

Dubrey, S. W., Bathia, A., Woodham, S., & Rakowicz, W. (2014).

Lyme disease in the United Kingdom. Postgraduate Medical

Journal, 90(1059), 33-42.

Dunn, J. M., Davis, S., Stacey, A., & Diuk-Wasser, M. A. (2013). A

simple model for the establishment of tick-borne pathogens of Ixodes scapularis: A global sensitivity analysis of R0. Journal of

Theoretical Biology, 335, 213-221.

Estrada-Peña, A., Martínez, J. M., Sánchez Acedo, C., Quilez,

J., & Del Cacho, E. (2004). Phenology of the tick, Ixodes ricinus,

in its southern distribution range (central Spain). Medical and

Veterinary Entomology, 18(4), 387-397.

Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R., & de la

Fuente, J. (2014). Effects of environmental change on zoonotic

disease risk: an ecological primer. Trends in Parasitology, 30(4),

-214.

Farkas, R., Tánczos, B., Bongiorno, G., Maroli, M., Dereure, J., &

Ready, P. D. (2011). First surveys to investigate the presence of

canine leishmaniasis and its phlebotomine vectors in Hungary.

Vector Borne and Zoonotic Diseases, 11(7), 823-834.

Feria-Arroyo, T. P., Castro-Arellano, I., Gordillo-Pérez, G., Cavazos,

A. L., Vargas-Sandoval, M., Grover, A.,...Esteve-Gassent, M. D.

(2014). Implications of climate change on the distribution of the

tick vector Ixodes scapularis and risk for Lyme disease in the

Texas-Mexico transboundary region. Parasites & Vectors, 7(1),

Recuperado de https://doi.org/10.1186/1756-3305-7-199

Ferreira, R. A., Lazzari, C. R., Lorenzo, M. G., & Pereira, M. H. (2007).

Do haematophagous bugs assess skin surface temperature to

detect blood vessels? PLoS One, 2(9), e932. doi: 10.1371/journal.

pone.0000932

Fischer, D., Thomas, S. M., & Beierkuhnlein, C. (2011). Modelling

climatic suitability and dispersal for disease vectors: the example

of a phlebotomine sandfly in Europe. Procedia Environmental

Sciences, 7, 164-169.

Fischer, D., Thomas, S. M., Suk, J. E., Sudre, B., Hess, A., Tjaden, N.

B.,…Semenza, J. C. (2013). Climate change effects on Chikungunya

transmission in Europe: geospatial analysis of vector’s

climatic suitability and virus’ temperature requirements. International

Journal of Health Geographics, 12(1), 51. Recuperado de

https://doi.org/10.1186/1476-072X-12-51

Fresquet, N., & Lazzari, C. R. (2011). Response to heat in Rhodnius

prolixus: the role of the thermal background. Journal of Insect

Physiology, 57(10), 1446-1449.

Fülöp, B., & Poggensee, G. (2008). Epidemiological situation of

Lyme borreliosis in Germany: Surveillance data from six Eastern

German States, 2002 to 2006. Parasitology Research, 103(Supl. 1),

S117-S120.

Garza, M., Feria Arroyo, T. P., Casillas, E. A., Sánchez-Cordero, V.,

Rivaldi, C-L., & Sarkar, S. (2014). Projected future distributions of

vectors of Trypanosoma cruzi in North America under climate

change scenarios. PLoS Neglected Tropical Diseases, 8(5), e2818.

Recuperado de https://doi.org/10.1371/journal.pntd.0002818

Gatewood, A. G., Liebman, K. A., Vourc’h, G., Bunikis, J., Hamer,

S. A., Cortinas, R.,…Diuk-Wasser, M. A. (2009). Climate and tick

seasonality are predictors of Borrelia burgdorferi genotype

distribution. Applied and Environmental Microbiology, 75(8),

-2483.

González, C., Rebollar-Téllez, E. A., Ibáñez-Bernal, S., Becker-

Fauser, I., Martínez-Meyer, E., Peterson, A. T., & Sánchez-Cordero,

V. (2011). Current knowledge of Leishmania vectors in Mexico:

How geographic distributions of species relate to transmission

areas. American Journal of Tropical Medicine and Hygiene,

(5), 839-846. doi: 10.4269/ajtmh.2011.10-0452

González, C., Wang, O., Strutz, S. E., González-Salazar, E.,

Sánchez-Cordero, E., & Sarkar, S. (2010). Climate change

and risk of leishmaniasis in North America: Predictions from

ecological niche models of vector and reservoir species. PLoS

Neglected Tropical Diseases, 4(1), e585. Recuperado de

https://doi.org/10.1371/journal.pntd.0000585

Gray, J. S. (2008). Ixodes ricinus seasonal activity: Implications of

global warming indicated by revisiting tick and weather data.

International Journal of Medical Microbiology, 298, 19-24.

Guhl, F. (2009). Enfermedad de Chagas: Realidad y

perspectivas. Revista Biomédica, 20, 228-234.

Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalan,

C. (2006). Climate change and human health: Impacts,

vulnerability and public health. Public Health, 120(7), 585-596.

Herrmann, C., & Gern, L. (2010). Survival of Ixodes ricinus

(Acari: Ixodidae) under challenging conditions of temperature

and humidity is influenced by Borrelia burgdorferi sensu lato

infection. Journal of Medical Entomology, 47(6), 1196-1204.

Heyman, P., Cochez, C., Hofhuis, A., van der Giessen, J.,

Sprong, H., Porter, S. R.,…Papa, A. (2010). A clear and present

danger: tick-borne diseases in Europe. Expert Review of Antiinfective

Therapy, 8(1), 33-50. doi: 10.1586/eri.09.118

Hopp, M. J., & Foley, J. A. (2001). Global-scale relationships

between climate and the dengue fever vector, Aedes aegypti.

Climatic Change, 48(2-3), 441-463.

Hu, W., Clements, A., Williams, G., Tong, S., & Mengersen, K.

(2012). Spatial patterns and socioecological drivers of dengue

fever transmission in Queensland, Australia. Environmental

Health Perspectives, 120(2), 260.

Hufnagel, L., & Kocsis, M. (2011). Impacts of climate change on

Lepidoptera species and communities. Applied Ecology and

Environmental Research, 9(1), 43-72.

Kakkar, M. (2012). Dengue fever is massively under-reported

in India, hampering our response. British Medical Journal, 345,

e8574. doi: 10.1136/bmj.e8574

Karim, M., Munshi, S. U., Anwar, N., & Alam, M. S. (2012). Climatic

factors influencing dengue cases in Dhaka city: a model for

dengue prediction. Indian Journal of Medical Research, 136(1),

-39.

Kernif, T., Socolovschi, C., Bitam, I., Raoult, D., & Parola, P. (2012).

Vector-borne rickettsioses in North Africa. Infectious Disease

Clinics of North America, 26(2), 455-478.

Kuehn, B. M. (2013). CDC estimates 300 000 US cases of

Lyme disease annually. Jama, 310(11), 1110. doi: 10.1001/

jama.2013.278331

Lambrechts, L., Scott, T. W., & Gubler, D. J. (2010). Consequences

of the expanding global distribution of Aedes albopictus for

dengue virus transmission. PLoS Neglected Tropical Diseases,

(5), e646. doi: 10.1371/journal.pntd.0000646

Laniak, G. F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn,

P.,…Hughes, A. (2013). Integrated environmental modeling: A

vision and roadmap for the future. Environmental Modeling &l

Software, 39, 3-23.

Lindgren, E., & Naucke, T. (2006). Leishmaniasis: Influences of

climate and climate change epidemiology, ecology and

adaptation measures. In B. Menne, & K. L. Ebi (Eds.), Climate

change and adaptation strategies for human health (pp. 131-

. Darmstadt, Germany: Steinkopff Verlag.

Ludwig, A., Ginsberg, H. S., Hickling, G. J., & Ogden, N. H.

(2015). A dynamic population model to investigate effects

of climate and climate-independent factors on the lifecycle

of Amblyomma americanum (Acari: Ixodidae). Journal of

Medical Entomology, tjv150, 1-17. doi: 10.1093/jme/tjv150

Mannelli, A., Bertolotti, L., Gern, L., & Gray, J. (2012). Ecology of

Borrelia burgdorferi sensu lato in Europe: transmission dynamics

in multi-host systems, influence of molecular processes and

effects of climate change. FEMS Microbiology Reviews, 36(4),

-861.

Margos, G., Vollmer, S. A., Ogden, N. H., & Fish, D. (2011).

Population genetics, taxonomy, phylogeny and evolution

of Borrelia burgdorferi sensu lato. Infection, Genetics and

Evolution, 11(7), 1545-1563.

Medone, P., Ceccarelli, S., Parham, P. E., Figuera, A., &

Rabinovich, J. E. (2015). The impact of climate change on the

geographical distribution of two vectors of Chagas disease:

implications for the force of infection. Philosophical transactions

of the Royal Society of London. Series B, Biological sciences

Royal Society, 370(1665), 20130560. doi: 10.1098/rstb.2013.0560

Mencke, N. (2011). The importance of canine leishmaniosis in

non-endemic areas, with special emphasis on the situation in

Germany. Berliner und Münchener tierärztliche Wochenschrift,

(11-12), 434-442.

Miranda, J. E., Navickiene, H. M. D., Nogueira-Couto, R. H.,

De Bortoli, S. A., Kato, M. J., Bolzani, V. S., & Furlan, M. (2003).

Susceptibility of Apis mellifera (Hymenoptera: Apidae) to

pellitorine, an amide isolated from Piper tuberculatum

(Piperaceae). Apidologie, 34(4), 409-415.

Morán Cadenas, F., Rais, O., Jouda, F., Douet, V., Humair, P. F.,

Moret, J., & Gern, L. (2007). Phenology of Ixodes ricinus and

infection with Borrelia burgdorferi sensu lato along a northand

south-facing altitudinal gradient on Chaumont Mountain,

Switzerland. Journal of Medical Entomology, 44(4), 683-693.

Murray, N. E. A., Quam, M. B., & Wilder-Smith, A. (2013).

Epidemiology of dengue: past, present and future prospects.

Journal of Clinical Epidemiology, 5, 299-309.

Nonaka, E., Ebel, G. D., & Wearing, H. J. (2010). Persistence

of pathogens with short infectious periods in seasonal tick

populations: the relative importance of three transmission routes.

PLoS One, 5(7), e11745. doi: 10.1371/journal.pone.0011745

Ocampo, C. B. et al. Insecticide resistance status of Aedes

aegypti in 10 localities in Colombia. Acta Tropica, 118(1): 37-44,

Ogden, N. H., Barker, I. K., Beauchamp, G., Brazeau, S., Charron,

D. F., Maarouf, A.,…Lindsay, L. R. (2006). Investigation of

ground level and remote-sensed data for habitat classification

and prediction of survival of Ixodes scapularis in habitats of

southeastern Canada. Journal of Medical Entomology, 43(2),

-414.

Ogden, N. H., Radojevic, M., Wu, X., Duvvuri, V. R., Leighton,

P. A., & Wu, J. (2014). Estimated effects of projected climate

change on the basic reproductive number of the Lyme disease

vector Ixodes scapularis. Environmental Health Perspectives,

(6), 631-638.

Ostfeld, R. S., & Brunner, J. L. (2015). Climate change and Ixodes

tick-borne diseases of humans. Philosophical Transactions of

the Royal Society of London B: Biological Sciences, 370(1665),

doi: 10.1098/rstb.2014.0051

Oteo, J. A., & Portillo, A. (2012). Tick-borne rickettsioses in

Europe. Ticks and Tick-Borne Diseases, 3(5-6), 271-278.

Pabón, J. D., & Nicholls, R. S. (2005). El cambio climático y la

salud humana. Biomédica, 25(1), 5-8.

Parham, P. E., Waldock, J., Christophides, G. K., Hemming,

D., Agusto, F., Evans, K. J.,…Michael, E. (2015). Climate,

environmental and socio-economic change: Weighing up the

balance in vector-borne disease transmission. Philosophical

Transactions of the Royal Society of London B: Biological

Sciences, 370(1665), 20130551. doi: 10.1098/rstb.2013.0551

Peniche-Lara, G., Perez-Osorio, C., Dzul-Rosado, K., & Zavala-

Castro, J. (2015). Rickettsiosis: Enfermedad re-emergente en

México. Ciencia y Humanismo en la Salud, 2(2), 76-84.

Pigott, D. M., Bhatt, S., Golding, N., Duda, K. A., Battle, K. E.,

Brady, O. J.,…Hay, S. I. (2014). Global distribution maps of the

leishmaniases. eLife, 3, e02851. doi: 10.7554/eLife.02851

Quintero, J., Brochero, H., Manrique-Saide, P., Barrera-Pérez, M.,

Basso, C., Romero, S.,…Petzold, M. (2014). Ecological, biological

and social dimensions of dengue vector breeding in five urban

settings of Latin America: A multi-country study. BMC Infectious

Diseases, 14(1), 38. doi: 10.1186/1471-2334-14-38

Radke, E. G., Gregory, C. J., Kintziger, K. W., Sauber-Schatz, E. K.,

Hunsperger, E. A., Gallagher, G. R.,… Blackmore, C. G. (2012).

Dengue outbreak in key west, Florida, USA, 2009. Emerging

Infectious Diseases, 18(1), 135-137.

Ready, P. D. (2008). Leishmaniasis emergence and climate

change. Revue Scientifique et Technique (International Office

of Epizootics), 27(2), 399-412.

Rebollar-Téllez, E. A., Tun-Ku, E., Manrique-Saide, P. C., &

Andrade Narvaez, F. J. (2013). Relative abundances of sandfly

species (Diptera: Phlebotominae) in two villages in the same

area of Campeche, in southern Mexico. Annals of Tropical

Medicine and Parasitology, 99(2), 193-201.

Roberts, M. G., & Heesterbeek, J. A. P. (2013). Characterizing

the next-generation matrix and basic reproduction number in

ecological epidemiology. Journal of Mathematical Biology,

(4-5), 1045-1064.

Rolandi, C., & Schilman, P. E. (2012). Linking global warming,

metabolic rate of hematophagous vectors, and the transmission

of infectious diseases. Frontiers in Physiology, 3, 75. doi: 10.3389/

fphys.2012.00075

Romer, Y., Nava, S., Govedic, F., Cicuttin, G., Denison, A.

M., Singleton, J.,…Paddock, C. D. (2014). Rickettsia parkeri

rickettsiosis in different ecological regions of Argentina and its

association with Amblyomma tigrinum as a potential vector.

The American Journal of Tropical Medicine and Hygiene, 91(6),

-1160.

Schofield, C. J., & Galvão, C. (2009). Classification, evolution,

and species groups within the Triatominae. Acta Tropica, 110(2-

, 88-100.

Shuman, E. K. (2010). Global climate change and infectious

diseases. The New England Journal of Medicine, 362, 1061-1063.

Singh, N., Kumar, M., & Singh, R. K. (2012). Leishmaniasis: current

status of available drugs and new potential drug targets. Asian

Pacific Jounal of Tropical Medicine, 5(6), 485-497.

Slesak, G., Inthalath, S., Dittrich, S., Paris, D. H., & Newton, P.

N. (2015). Leeches as further potential vectors for rickettsial

infections. Proceedings of the National Academy of Sciences,

(48), E6593-E6594.

Stanek, G., Wormser, G. P., Gray, J., & Strle, F. (2012). Lyme

borreliosis. The Lancet, 379(9814), 461-473.

Süss, J., Klaus, C., Gerstengarbe, F. W., & Werner, P. C. (2008).

What makes ticks tick? Climate change, ticks, and tick-borne

diseases. Journal of Travel Medicine, 15(1), 39-45.

Tánczos, B., Balogh, N., Király, L., Biksi, I., Szeredi, L., Gyurkovsky,

M.,…Farkas, R. (2012). First record of autochthonous canine

leishmaniasis in Hungary. Vector Borne Zoonotic Disease, 12(7),

-594.

Trájer, A. J., Bede-Fazekas, A., Hufnagel, L., Horváth, L., Bobvos,

J.,…& Páldy, A. (2013). The effect of climate change on the

potential distribution of the European Phlebotomus species.

Applied Ecology and Environmental Research, 11(2), 189-208.

Tsetsarkin, K.A. et al. Chikungunya virus: evolution and genetic

determinants of emergence. Current Opinion in Virology, 1(4):

-317, 2014.

Tun-Lin, W., Burkot, T. R., & Kay, B. H. (2000). Effects of temperature

and larval diet on development rates and survival of the

dengue vector Ae. aegypti in north Queensland, Australia.

Medical and Veterinary Entomology, 14(1), 31-37.

Van Bortel, W., Dorleans, F., Rosine, J., Blateau, A., Rousset, D.,

Matheus, S.,…Zeller, H. (2014). Chikungunya outbreak in the

Caribbean region, December 2013 to March 2014, and the

significance for Europe. Euro Surveillance: bulletin Europeen sur

les maladies transmissibles-European communicable disease

bulletin, 19(13). pii: 20759

Walker, D. H. (2016). Changing dynamics of human–rickettsial

interactions. The American Journal of Tropical Medicine and

Hygiene, 94(1), 3-4.

WHO (World Health Organization). (2009). Leishmaniasis:

background information. A brief history of the disease [Datos

en línea]. Recuperado el 23 de octubre de 2016, de http://

www.who.int/leishmaniasis/en/

Wright, N. A., Davis, L. E., Aftergut, K. S., Parrish, C. A., & Cockerell,

C. J. (2008). Cutaneous leishmaniasis in Texas: a northern

spread of endemic areas. Journal of the American Academy

of Dermatology, 58(4), 650-652.

Yang, H. M., Macoris, M. L., Galvani, K. C., Andrighetti, M. T., &

Wanderley, D. M. (2009). Assessing the effects of temperature

on the population of Aedes aegypti, the vector of dengue.

Epidemiology & Infection, 137(08), 1188-1202.

Published

2017-11-29

How to Cite

Andrade Ochoa, S., Chacón Vargas, K. F., Rivera Chavira, B. E., & Sánchez Torres, L. E. (2017). Vector borne disease and climate change. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (72), 118–128. https://doi.org/10.33064/iycuaa201772229

Issue

Section

Revisiones Científicas

Categories