Mathematical modeling of hydrocracking of petroleum fractions by using one to six lumps
DOI:
https://doi.org/10.33064/iycuaa2019782233Keywords:
hydrocracking, oil hydrocarbons, discrete approach, one-six lumps, mathematical modeling, kineticsAbstract
The mathematical modeling of hydrocracking reaction of petroleum fractions was carried out considering a pseudohomogeneous phase. The discrete description was used to represent the kinetic of the reactions. One
to 6 lumps of pseudocompounds with different reaction routes were used. Data from the oil hydrocarbon hydrocracking of literature were used to obtain the mathematical model parameters. Modeling more than one group or lump was done by automatic successive approach solving the system of equations starting with one lump, then two, then three, and so on, checking that the material balance is satisfied in each case. Findings showed concordance between the models and the experimental data, highlighting the use of six lumps, from whose description it is possible to determine the composition of the hydrocracking products in a detailed and reliable way.
Downloads
Metrics
References
• Balasubramanian, P., & Pushpavanam, S. (2008). Model discrimination in hydrocracking of vacuum gas oil using discrete lumped kinetics. Fuel, 87(8-9), 1660-1672. doi: 10.1016/j.fuel.2007.08.009
• Jarullah, A. (2011). Kinetic modelling simulation and optimal operation of trickle bed reactor for hydrotreating of crude oil (Tesis doctoral). Recuperada de https://bradscholars.brad.ac.uk/handle/10454/5363
• Levenspiel, O. (1998). Chemical Reaction Engineering. US: Wiley.
• Li, G., & Cai, C. (2017). Estimation parameters of hydrocracking model with NSGA-ii (Non-dominated Sorting Genetic Algorithm) by using discrete kinetic lumping model. Fuel, 200, 333-344. doi: 10.1016/j.fuel.2017.03.078
• Mederos, F. S., Elizalde, I., & Ancheyta, J. (2009). Steadystate and dynamic reactor models for hydrotreatment of oil fractions: A review. Catalysis Reviews, 51(4), 485-607. doi: 10.1080/01614940903048612
• Ortega Garcia, F. J., Muñoz Arroyo, J. A., Flores Sánchez, P., Mar Juárez, E., & Dominguez Esquivel, J. M. (2017). Hydrocracking kinetics of a heavy crude oil on a liquid catalyst. Energy Fuels, 31(7), 6794-6799. doi: 10.1021/acs.energyfuels.7b00639
• Rana, M. S., Ancheyta J., Maity, S. K., & Marroquín, G. (2008). Comparison between refinery processes for heavy oil upgrading: A future demand. International Journal of Oil, Gas and Coal Technology (IJOGCT), 1(3), 250-282. doi: 10.1504/
IJOGCT.2008.019845
• Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86(9), 1216-1231. doi: 10.1016/j.fuel.2006.08.004
• Romo, D. (2016). Refinación de petróleo en México y perspectiva de la Reforma Energética. Problemas del Desarrollo, 47(187), 139-164. doi: 10.1016/j.rpd.2016.10.005
• Secretaría de Energía. (2016). Prospectiva de petróleo crudo y petrolíferos 2016-2030. México: Autor. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/177673/Prospectiva_de_Petr_leo_Crudo_y_Petrol_feros_2016-2030.pdf
• Valavarasu, G., Bhaskar, M., & Balaraman, K. S. (2003). Mild hydrocracking-A review of the process, catalysts, reactions, kinetics, and advantages. Petroleum Science and Technology, 21(7-8), 1185-1205. doi: 10.1081/LFT-120017883
• Zhou, H., Lu, J., Cao, Z., Shi, J., Pan, M., Li, W., & Jiang, Q. (2011). Modeling and optimization of an industrial hydrocracking unit to improve the yield of diesel or kerosene. Fuel, 90(12), 3521-3530. doi: 10.1016/j.fuel.2011.02.043
Downloads
Published
Versions
- 2019-09-30 (2)
- 2019-09-30 (1)
License
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)