Parameters of the built environment and its impact on human well-being. Theory and application of measurement methods and tools.

Authors

DOI:

https://doi.org/10.33064/artificio420234831

Keywords:

Built environment, human being, well being, measurment tools, evidence-based design

Abstract

The built environment and its impact on human well-being and health are analyzed in this article. The aim is to identify the parameters of the environment that influence well-being, how they are measured, and their relationship with health. To achieve this, a literature review was conducted using the WOS database between 2008 and 2018. In the analysis of environmental parameters, there is a limited connection between studies on materials and human beings, with little emphasis on biophilia and form. Concerning the human aspect, there is a greater number of psychological studies compared to biological studies.
Additionally, the article presents six empirical investigations conducted between 2018 and 2022. These cases attempt to correlate the psychological and biological effects of the built environment in order to relate individuals’ reported measurements with physiological measurements.
The article concludes that this line of research is essential for strengthening both data generation and evidence-based design in the built environment. It highlights the need to comprehensively address the relationship between human beings and their built environment to enhance the well-being and health of people.

Downloads

Download data is not yet available.

References

Abella, A., Araya León, M., Marco-Almagro, L., & Clèries Garcia, L. (2022). Perception evaluation kit: a case study with materials and learning styles. International Journal of Technology and Design Education, 32(3), 1941–1962. https://doi.org/10.1007/s10798-021-09676-4

Abdelaal, M., Soebarto, V. (2018). History matters: The origins of biophilic design of innovative learning spaces in traditional architecture. Archnet-IJAR, 12(3), 108–127. https://doi.org/10.26687/archnet-ijar.v12i3.1655

Araya León, M. J., & Abella Garcia, A. (2022). Strategies for well-being in new work spaces: A case study in a post-pandemic context. Temes de Disseny, 38, 132–161. https://doi.org/10.46467/tdd38.2022.132-161

Araya, M. J., Abella, A., Guasch, R., Estevez, A., & Peña, J. (2020). Emotional Analogous Data: Interaction in the Work Space. Modern Environmental Science and Engineering, 1183-1194. DOI:10.15341/mese(2333-2581)/12.05.2019/013

Alves, J., Torres Silva, L., Remoaldo, P. (2019). How Can Low-Frequency Noise Exposure Interact with the Well-Being of a Population? Some Results from a Portuguese Municipality. Applied Sciences, 9(24), 5566. https://doi.org/10.3390/app9245566

Athavipach, C., Pan-Ngum, S., Israsena, P. (2019). A Wearable In-Ear EEG Device for Emotion Monitoring. Sensors, 19(18), 4014. https://doi.org/10.3390/s19184014

Awada, M., Srour, I. (2018). A genetic algorithm based framework to model the relationship between building renovation decisions y occupants’ satisfaction with indoor environmental quality. Building y Environment, 146, 247–257. https://doi.org/10.1016/j.buildenv.2018.10.001

Azuma, K., Ikeda, K., Kagi, N., Yanagi, U., Osawa, H. (2018). Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles y combined exposure to indoor air pollutants. Science of the Total Environment, 616–617, 1649–1655. https://doi.org/10.1016/j.scitotenv.2017.10.147

Azuma, K., Kagi, N., Yanagi, U., Osawa, H. (2018). Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health y psychomotor performance. Environment International, 121(1), 51–56. https://doi.org/10.1016/j.envint.2018.08.059

Bardhan, R., Debnath, R., Jana, A., Norford, L. K. (2018). Investigating the association of healthcare-seeking behavior with the freshness of indoor spaces in low-income tenement housing in Mumbai. Habitat International, 71, 156–168. https://doi.org/10.1016/j.habitatint.2017.12.007

Barrett, P., Barrett, L., Davies, F. (2013). Achieving a step change in the optimal sensory design of buildings forusers at all life-stages. Building y Environment, 67(67), 97–104. https://doi.org/10.1016/j.buildenv.2013.05.011

Baurès, E., Blanchard, O., Mercier, F., Surget, E., le Cann, P., Rivier, A., Gangneux, J. P., Florentin, A. (2018). Indoor air quality in two French hospitals: Measurement of chemical y microbiological contaminants. Science of the Total Environment, 642, 168–179. https://doi.org/10.1016/j.scitotenv.2018.06.047

Bluyssen, P. M., Zhang, D., Kurvers, S., Overtoom, M., Ortiz-Sanchez, M. (2018). Self-reported health y comfort of school children in 54 classrooms of 21 Dutch school buildings. Building y Environment, 138, 106–123. https://doi.org/10.1016/j.buildenv.2018.04.032

Bringslimark, T., Hartig, T., Patil, G. G .(2009). The psychological benefits of indoor plants: A critical review of the experimental literature. Journal of Environmental Psychology, 29(4), 422–433. https://doi.org/10.1016/j.jenvp.2009.05.001

Calvaresi, A., Arnesano, M., Pietroni, F., Revel, G. M. (2018). Measuring metabolic rate to improve comfort management in buildings. Environmental Engineering y Management Journal, 17(10), 2287–2296. https://doi.org/10.30638/eemj.2018.227

Carrer, P., Wolkoff, P. (2018). Assessment of indoor air quality problems in office-like environments: Role of occupational health services. International Journal of Environmental Research y Public Health 15(4), 741. https://doi.org/10.3390/ijerph15040741

Chaudhuri, T., Zhai, D., Soh, Y. C., Li, H., Xie, L. (2018a) Thermal comfort prediction using normalized skin temperature in a uniform built environment. Energy y Buildings, 159, 426–440. https://doi.org/10.1016/j.enbuild.2017.10.098

Chaudhuri, T., Zhai, D., Soh, Y. C., Li, H., Xie, L. (2018b). Ryom forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology. Energy y Buildings, 166, 391–406. https://doi.org/10.1016/J.ENBUILD.2018.02.035

Claeson, A. S., Palmquist, E., Nordin, S. (2018). Physical y chemical trigger factors in environmental intolerance. International Journal of Hygiene y Environmental Health, 221(3), 586–592. https://doi.org/10.1016/j.ijheh.2018.02.009

Dai, K., Yu, Q., Zhang, Z., Wang, Y., Wang, X. (2018). Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment. Science of the Total Environment, 610–611, 905–911. https://doi.org/10.1016/j.scitotenv.2017.08.164

Demattè, M. L., Zucco, G. M., Roncato, S., Gatto, P., Paulon, E., Cavalli, R., Zanetti, M. (2018). New insights into the psychological dimension of wood–human interaction. European Journal of Wood y Wood Products, 76(4), 1093–1100. https://doi.org/10.1007/s00107-018-1315-y

Dreyer, B. C., Coulombe, S., Whitney, S., Riemer, M., Labbé, D. (2018). Beyond Exposure to Outdoor Nature: Exploration of the Benefits of a Green Building’s Indoor Environment on Wellbeing. Frontiers in Psychology, 9, 1583. https://doi.org/10.3389/fpsyg.2018.01583

Durmisevic, S., Ciftcioglu, Ö. (2010). Knowledge Modeling Tool for Evidence-Based Design. HERD: Health Environments Research & Design Journal, 3(3), 101–123. https://doi.org/10.1177/193758671000300310

Ergan, S., Shi, Z., Yu, X. (2018). Towards quantifying human experience in the built environment: A crowdsourcing based experiment to identify influential architectural design features. Journal of Building Engineering, 20, 51–59. https://doi.org/10.1016/j.jobe.2018.07.004

Ghazalli, A. J., Brack, C., Bai, X., Said, I. (2018). Alterations in use of space, air quality, temperature y humidity by the presence of vertical greenery system in a building corridor. Urban Forestry y Urban Greening, 32, 177–184. https://doi.org/10.1016/j.ufug.2018.04.015

Goronovski, A., Joyce, P. J., Björklund, A., Finnveden, G., Tkaczyk, A. H. (2018). Impact assessment of enhanced exposure from Naturally Occurring Radioactive Materials (NORM) within LCA. Journal of Cleaner Production, 172, 2824–2839. https://doi.org/10.1016/j.jclepro.2017.11.131

Gou, Z., Khoshbakht, M., Mahdoudi, B. (2018). The impact of outdoor views on students’ seat preference in learning environments. Buildings, 8(8). https://doi.org/10.3390/buildings8080096

Harb, P., Locoge, N., Thevenet, F. (2018). Emissions y treatment of VOCs emitted from wood-based construction materials: Impact on indoor air quality. Chemical Engineering Journal, 354, 641–652. https://doi.org/10.1016/j.cej.2018.08.085

Hawick, L., Clely, J., Kitto, S. (2018). ‘I feel like I sleep here’: how space y place influence medical student experiences. Medical Education, 52(10), 1016–1027. https://doi.org/10.1111/medu.13614

Healthy Materials Lab | The next generation of materials (n.d.) Retrieved June 16, 2020, from https://healthymaterialslab.org/

Hoffman, K., Hammel, S. C., Phillips, A. L., Lorenzo, A. M., Chen, A., Calafat, A. M., Ye, X., Webster, T. F., Stapleton, H. M. (2018). Biomarkers of exposure to SVOCs in children y their demographic associations: The TESIE Study. Environment International, 119, 26–36. https://doi.org/10.1016/j.envint.2018.06.007

International WELL Building, I. (2020). The WELL Performance Verification Guidebook. https://a.storyblok.com/f/52232/x/cc341e5b92/well-performance-verification-guidebook-with-q2-2020-addenda.pdf

Irga, P. J., Pettit, T. J., Torpy, F. R. (2018). The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Reviews in Environmental Science y Biotechnology, 17(2), 395–415. https://doi.org/10.1007/s11157-018-9465-2

Jiang, J., Wang, D., Liu, Y., Xu, Y., Liu, J. (2018). A study on pupils’ learning performance y thermal comfort of primary schools in China. Building and Environment, 134, 102-113. https://doi.org/10.1016/j.buildenv.2018.02.036

Karwowski, W. (2012). Hybook of human factors y ergonomics. In Hybook of human factors y ergonomics. https://doi.org/10.1002/0470048204.ch27

Khyelwal, H., Schenning, A. P., Debije, M. G. (2017). Infrared regulating smart window based on organic materials. Advanced Energy Materials, 7(14), 1. https://doi.org/10.1002/aenm.201602209

Mendell, M. J., Macher, J. M., Kumagai, K. (2018). Measured moisture in buildings y adverse health effects: A review. Indoor Air 28(4), 488–499. https://doi.org/10.1111/ina.12464

Mujan, I., Anđelković, A. S., Munćan, V., Kljajić, M., Ružić, D. (2019). Influence of indoor environmental quality on human health y productivity - A review. Journal of Cleaner Production, 217, 646–657. https://doi.org/10.1016/j.jclepro.2019.01.307

Olszewska-Guizzo, A., Escoffier, N., Chan, J., Yok, T. P. (2018). Window view y the brain: Effects of floor level y green cover on the alpha y beta rhythms in a passive exposure eeg experiment. International Journal of Environmental Research y Public Health, 15(11). https://doi.org/10.3390/ijerph15112358

Othman, M., Latif, M. T., Mohamed, A. F. (2018). Health impact assessment from building life cycles y trace metals in coarse particulate matter in urban office environments. Ecotoxicology y Environmental Safety, 148, 293–302. https://doi.org/10.1016/j.ecoenv.2017.10.034

Pantelic, J., Rysanek, A., Miller, C., Peng, Y., Teitelbaum, E., Meggers, F., Schlüter, A. (2018). Comparing the indoor environmental quality of a displacement ventilation y passive

chilled beam application to conventional air-conditioning in the Tropics. Building y Environment, 130, 128–142. https://doi.org/10.1016/j.buildenv.2017.11.026

Park, J., Loftness, V., Aziz, A. (2018). Post-Occupancy Evaluation y IEQ Measurements from 64 Office Buildings: Critical Factors y Thresholds for User Satisfaction on Thermal Quality. Buildings, 8(11), 156. https://doi.org/10.3390/buildings8110156

Proctor, C. R., Reimann, M., Vriens, B., Hammes, F. (2018). Biofilms in shower hoses. Water Research, 131, 274–286. https://doi.org/10.1016/j.watres.2017.12.027

Rasheed, E. O., Byrd, H. (2017). Can self-evaluation measure the effect of IEQ on productivity? A review of literature. Facilities, 35(11–12), 601–621. https://doi.org/10.1108/F-08-2016-0087

Rein, G. (2004). Bioinformation within the biofield: beyond bioelectromagnetics. Journal of Alternative y Complementary Medicine, 10(1), 59–68. https://doi.org/10.1089/107555304322848968

Salata, F., Golasi, I., Verrusio, W., de Lieto Vollaro, E., Cacciafesta, M., de Lieto Vollaro, A. (2018). On the necessities to analyse the thermohygrometric perception in aged people. A review about indoor thermal comfort, health y energetic aspects y a perspective for future studies. Sustainable Cities and Society 41, 469–480. https://doi.org/10.1016/j.scs.2018.06.003

Sun, Y., Hou, J., Kong, X., Zhang, Q., Wang, P., Weschler, L. B., Sundell, J. (2018). “Dampness” y “Dryness”: What is important for children’s allergies? A cross-sectional study of 7366 children in northeast Chinese homes. Building y Environment, 139, 38–45. https://doi.org/10.1016/j.buildenv.2018.05.013

Tähtinen, K., Lappalainen, S., Karvala, K., Remes, J., Salonen, H. (2018). Association between four-level categorisation of indoor exposure y perceived indoor air quality. International Journal of Environmental Research y Public Health, 15(4). https://doi.org/10.3390/ijerph15040679

te Kulve M, Schlangen, L., van Marken Lichtenbelt, W. (2018). Interactions between the perception of light y temperature. Indoor Air, 28(6), 881–891. https://doi.org/10.1111/ina.12500

Viola, A. U., James, L. M., Schlangen, L., Dijk, D. (2008)Blue-enriched white light in the workplace improves self-reported alertness, performance y sleep quality. Scyinavian

Journal of Work, Environment y Health, 34(4), 297–306. https://doi.org/10.5271/sjweh.1268

Wolkoff, P. (2018). Indoor air humidity, air quality, y health – An overview. International Journal of Hygiene y Environmental Health, 221(3), 376–390. https://doi.org/10.1016/j.ijheh.2018.01.015

Yin, J., Zhu, S., MacNaughton, P., Allen, J. G., Spengler, J. D. (2018). Physiological y cognitive performance of exposure to biophilic indoor environment. Building y Environment, 132, 255–262. https://doi.org/10.1016/J.BUILDENV.2018.01.006

Zhang, J., Sun, C., Liu, W., Zou, Z., Zhang, Y., Li, B,, Zhao, Z., Deng, Q., Yang, X., Zhang, X., Qian, H., Sun, Y., Sundell, J.. Huang, C. (2018). Associations of household renovation materials y periods with childhood asthma, in China: A retrospective cohort study. Environment International, 113, 240–248. https://doi.org/10.1016/j.envint.2018.02.001

Published

2023-11-16

How to Cite

Araya León, M. J., Abella García, A., Guasch Ceballos, R., & Peña Andrés, J. (2023). Parameters of the built environment and its impact on human well-being. Theory and application of measurement methods and tools. Artificium, (4). https://doi.org/10.33064/artificio420234831

Issue

Section

Artículos