This is an outdated version published on 2023-12-01. Read the most recent version.

Improvements for Microclimatic Regulation of Urban Environment around the Former Municipal Market of Mexicali, Mexico.

Authors

  • Alan García Haro Universidad Autónoma de Baja California

DOI:

https://doi.org/10.33064/artificio420234797

Keywords:

urban design, urban climate, climate change

Abstract

In cities with a desert climate, the urban interventions that usually accompany architectural projects, play a fundamental role in the habitability of building exteriors and the functional relationship with their surroundings. Given the thermal conditions derived from the projected increase in temperatures due to climate change, the urban heat island effect and the high temperatures that naturally occur in the region, it becomes imperative that architectural projects consider microclimatic control strategies in their exterior spaces and urban areas to reduce the thermal stress of users and ensure their optimal functioning. In this context, this research proposes an approach for the identification of the microclimatic impact of design strategies for outdoor and urban spaces in an architectural intervention proposal. In particular, the two proposals of Rehabilitation of the Former Municipal Market of Mexicali, Mexico, a building with strong social roots in the community and which is currently disabled, are studied. With this objective, three stages of analysis were proposed: 1) field measurements for a detailed analysis of the climatic behavior of urban spaces; 2) development of different scenarios of urban intervention for the microclimatic improvement of the surroundings of the project; and 3) evaluation of the influence of the proposed design strategies on the thermal behavior of spaces through outdoor thermal simulations in ENVI-met. Finally, the results and conclusions analyze the effectiveness of the urban design strategies proposed around mobility and the recreational use of public spaces. Where a series of considerations were identified that allow a technically justified response to the climatic adaptation of the urban environment of the architectural project for the Rehabilitation of the Former Municipal Market of Mexicali.

Downloads

Download data is not yet available.

References

Acero, J. A., Koh, E. J., Sun Tan, Y., & Norford, L. K. (2021). Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere, 1012. doi:https://doi.org/10.3390/atmos12081012

Ahmadi Venhari, A., Tenpierik, M., & Taleghani, M. (2019). The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 68-76. doi:https://doi.org/10.1016/j.jaridenv.2019.04.009

Arellano, B., & Roca, J. (2021). Using remote sensing imagery to study urban heat island and heat waves. Proceedings Volume 11829, Earth Observing Systems XXVI. 1182905 . San Diego, California, Estados Unidos: International Society for Photo-Optical Instrumentation Engineers (SPIE). doi:https://doi.org/10.1117/12.2594387

Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13(3-4), 373-384. doi:https://doi-org/10.1016/S1364-8152(98)00042-5

Casillas-Higuera, Á., García-Cueto, R., & Leyva-Camacho, O. (2014). Detección de la Isla de Calor mediante Modelado Dinámico en Mexicali, B.C. México. Información Tecnológica, 25(1), 139-150. doi:https://www.doi.org/10.4067/S0718-07642014000100015

Colter, K., Middel, A., & Martina, C. (2019). Effects of natural and artificial shade on human thermal comfort in residential neighborhood parks of Phoenix, Arizona, USA. Urban Forestry & Urban Greening, 44. doi:https://doi-org/10.1016/j.ufug.2019.126429

Coordinación General del Servicio Meteorológico Nacional. (2021). Reporte del Clima en México. Reporte Anual 2020. Ciudad de México: Comisión Nacional del Agua de México. Obtenido de https://smn.conagua.gob.mx/tools/DATA/Climatolog%C3%ADa/Diagn%C3%B3stico%20Atmosf%C3%A9rico/Reporte%20del%20Clima%20en%20M%C3%A9xico/Anual2020.pdf

Esri. (2022). World Imagery. Obtenido de ArcGIS Basemap: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9

García Haro, A., & Arellano Ramos, B. (2018). Isla de frío de los parques urbanos de Barcelona. Estudio de caso del Turó parc y el parc del Centre del Poblenou. 12º Congreso Internacional Ciudad y Territorio Virtual (págs. 381-400). Mendoza, Argentina: Centre de Politica de Sol i Valoracions, CPSV / Universitat Politècnica de Catalunya, UPC. doi:http://dx.doi.org/10.5821/ctv.8253

García-Haro, A., Arellano, B., & Roca, J. (2023). Quantifying the influence of design and location on the cool island effect of the urban parks of Barcelona. Journal of Applied Remote Sensing, 17(3), 034512. doi:https://doi.org/10.1117/1.JRS.17.034512

Instituto Nacional de Estadística, Geografía e Información (INEGI). (2020). Marco Geoestadístico Nacional. Obtenido de Banco Digital de Mapas: https://www.inegi.org.mx/app/mapas/

IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, H. Lee and J. Romero (eds.), 35-115. Ginebra, Suiza: IPCC. Obtenido de https://doi.org/10.59327/IPCC/AR6-9789291691647

Mohammed, A., Khan, A., & Santamouris, M. (2021). On the mitigation potential and climatic impact of modified urban albedo on a subtropical desert city. Building and Environment, 206. doi:https://doi-org/10.1016/j.buildenv.2021.108276

Rakoto, P. Y., Deilami, K., Hurley, J., Amati, M., & Sun, Q. (. (2021). Revisiting the cooling effects of urban greening: Planning implications of vegetation types and spatial configuration. Urban Forestry & Urban Greening, 64, 127266. doi:https://doi.org/10.1016/j.ufug.2021.127266

Ren, J., Shi, K., Kong, X., & Zhou, H. (2023). On-site measurement and numerical simulation study on characteristic of urban heat island in a multi-block region in Beijing, China. Sustainable Cities and Society, 95, 104615. doi:https://doi.org/10.1016/j.scs.2023.104615

Ruelas Parra, R. (2018). Cuatro inmuebles icónicos de Mexicali y su Valle. Propuesta para su protección y rehabilitación. Congreso de Patrimonio Histórico y Cultural de Baja California. Mexicali, Baja California, México. Obtenido de https://congresodepatrimonio.wordpress.com/2017/05/03/cuatro-inmuebles-iconicos-de-mexicali-y-su-valle-propuesta-para-su-proteccion-y-rehabilitacion/

Sen, S., Mendèz-Ruiz Fernandèz, J. P., & Roesler, J. (2020). Reflective Parking Lots for Microscale Urban Heat Island Mitigation. Journal od the Transportation Research Board, 2674(8), 663-671. doi:https://doi.org/10.1177%2F0361198120919401

Sistema Meteorológico Nacional (SMN). (2022). Registro de variables de Estación Meterorológica Automática Mexicali. Ciudad de México: Comisión Nacional del Agua. Obtenido de https://smn.conagua.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s

Yu, K., Chen, Y., Wang, D., Chen, Z., Gong, A., & Li, J. (2019). Study of the Seasonal Effect of Building Shadows on Urban Land Surface Temperatures Based on Remote Sensing Data. Remote Sensing, 11(5), 497. doi:https://doi.org/10.3390/rs11050497

Published

2023-12-01

Versions

How to Cite

García Haro, A. (2023). Improvements for Microclimatic Regulation of Urban Environment around the Former Municipal Market of Mexicali, Mexico. Artificium, (4), eE1. https://doi.org/10.33064/artificio420234797

Issue

Section

Artículos