Alcances diagnósticos y aplicaciones de la espectrometría de masas MALDI en medicina
DOI:
https://doi.org/10.33064/59lm20257547Palabras clave:
Espectrometría de masas, MALDI, Tiempo de vuelo, Pruebas diagnósticas, BiomarcadoresResumen
Introducción: La espectrometría de masas MALDI (Matrix-Assisted Laser Desorption/lonization) ha emergido como una herramienta de vanguardia en el campo de la medicina. Actualmente, su principal aplicación clínica se encuentra en el campo de la microbiología; sin embargo, su capacidad para generar perfiles moleculares detallados sugiere un potencial inminente para aplicaciones clínicas más amplias. Objetivo: Este artículo de revisión narrativa tiene como objetivo brindar una perspectiva actualizada acerca de los alcances diagnósticos y aplicaciones de la espectrometría de masas MALDI en el ámbito médico. Métodos: Esta revisión narrativa se basó en una búsqueda bibliográfica en PubMed y Google Scholar (2017-2024). La selección de artículos consideró relevancia y calidad metodológica. Resultados: MALDI-TOF ha revolucionado la identificación microbiológica superando a los métodos convencionales en rapidez y precisión, además de detectar patrones de resistencia antimicrobiana. En oncología ha mostrado sensibilidad y especificidad superiores que métodos tradicionales en cáncer de ovario (77% y 72%) y de pulmón (92.9% y 91.7%). En diagnóstico prenatal no invasivo permite la detección de ADN fetal con una precisión de 99.66% en trisomía 21. Además, en enfermedades neurodegenerativas ha identificado biomarcadores con alta sensibilidad y especificidad, detectando concentraciones de proteína tau 20 veces mayores que ELISA, consolidando su potencial en medicina personalizada. Conclusión: Los avances en proteómica y espectrometría de masas han mejorado el diagnóstico médico al ofrecer mayor precisión y rapidez que los métodos convencionales. Su desarrollo continuo fortalecerá la medicina de precisión, pero su implementación requiere estandarización de protocolos e investigación constante para garantizar resultados reproducibles y confiables.
Recepción: 31/12/2024
Aprobación: 30/06/2025
Descargas
Citas
1. Chong YK, Ho CC, Leung SY, Lau SKP, Woo PCY. Clinical Mass Spectrometry in the Bioinformatics Era: A Hitchhiker’s Guide. Computational and Structural Biotechnology Journal. Elsevier B.V.; 2018; 16:316-34. DOI: https://doi.org/10.1016/j.csbj.2018.08.003
2. Sinha A, Mann M. A beginner’s guide to mass spectrometry-based proteomics. Biochem (Lond) [Internet]. 9 de septiembre de 2020; 42(5):64-9. Disponible en: https://doi.org/10.1042/BIO20200057 DOI: https://doi.org/10.1042/BIO20200057
3. Li D, Yi J, Han G, Qiao L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Measurement Science Au. American Chemical Society; 2022; 2: 385-404. DOI: https://doi.org/10.1021/acsmeasuresciau.2c00019
4. Dudley E. MALDI Profiling and Applications in Medicine. Advances in experimental medicine and biology. NLM (Medline); 2019; 1140: 27-43. DOI: https://doi.org/10.1007/978-3-030-15950-4_2
5. Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, et al. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules. MDPI; 2022; 27. DOI: https://doi.org/10.3390/molecules27196196
6. Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, et al. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Review of Proteomics. Taylor and Francis Ltd; 2018; 15:683-96. DOI: https://doi.org/10.1080/14789450.2018.1505510
7. Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y, Suzuki T. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS): Basics and clinical applications. Clinical Chemistry and Laboratory Medicine. De Gruyter; 2020; 58:883-96. DOI: https://doi.org/10.1515/cclm-2019-0868
8. Oviaño M, Rodríguez-Sánchez B. MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enfermedades Infecciosas y Microbiologia Clinica. Elsevier Doyma; 2021; 39:192-200. DOI: https://doi.org/10.1016/j.eimce.2020.02.016
9. Oros D, Ceprnja M, Zucko J, Cindric M, Hozic A, Skrlin J, et al. Identification of pathogens from native urine samples by MALDI-TOF/TOF tandem mass spectrometry. Clin Proteomics. 23 de junio de 2020; 17(1). DOI: https://doi.org/10.1186/s12014-020-09289-4
10. Svetličić E, Dončević L, Ozdanovac L, Janeš A, Tustonić T, Štajduhar A, et al. Direct Identification of Urinary Tract Pathogens by MALDI-TOF/TOF Analysis and De Novo Peptide Sequencing. Molecules. 1 de septiembre de 2022; 27(17). DOI: https://doi.org/10.3390/molecules27175461
11. Neonakis IK, Spandidos DA. Detection of carbapenemase producers by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). European Journal of Clinical Microbiology and Infectious Diseases. Springer Verlag; 2019; 38:1795-801. DOI: https://doi.org/10.1007/s10096-019-03620-0
12. Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu C, Raduly L, et al. The relevance of mass spectrometry analysis for personalized medicine through its successful application in cancer “Omics”. International Journal of Molecular Sciences. MDPI AG; 2019; 20. DOI: https://doi.org/10.3390/ijms20102576
13. Sousa P, Silva L, Luís C, Câmara JS, Perestrelo R. MALDI-TOF MS: A Promising Analytical Approach to Cancer Diagnostics and Monitoring. Separations. Multidisciplinary Digital Publishing Institute (MDPI); 2023; 10. DOI: https://doi.org/10.3390/separations10080453
14. Berghmans E, Boonen K, Maes E, Mertens I, Pauwels P, Baggerman G. Implementation of Maldi mass spectrometry imaging in cancer proteomics research: Applications and challenges. Journal of Personalized Medicine. MDPI AG; 2020; 10:1-12. DOI: https://doi.org/10.3390/jpm10020054
15. Casadonte R, Longuespée R, Kriegsmann J, Kriegsmann M. MALDI IMS and Cancer Tissue Microarrays. En: Advances in Cancer Research. Academic Press Inc.; 2017: 173-200. DOI: https://doi.org/10.1016/bs.acr.2016.11.007
16. Banerjee S. Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega. 11 de febrero de 2020; 5(5):2041-8. DOI: https://doi.org/10.1021/acsomega.9b03764
17. Schürmann J, Gottwald J, Rottenaicher G, Tholey A, Röcken C. MALDI mass spectrometry imaging unravels organ and amyloid-type specific peptide signatures in pulmonary and gastrointestinal amyloidosis. Proteomics Clin Appl. 1 de noviembre de 2021; 15(6). DOI: https://doi.org/10.1002/prca.202000079
18. Song Y, Xu X, Wang N, Zhang T, Hu C. MALDI-TOF-MS analysis in low molecular weight serum peptidome biomarkers for NSCLC. J Clin Lab Anal. 1 de abril de 2022; 36(4). DOI: https://doi.org/10.1002/jcla.24254
19. Zambonin C, Aresta A. MALDI-TOF/MS Analysis of Non-Invasive Human Urine and Saliva Samples for the Identification of New Cancer Biomarkers. Molecules. MDPI; 2022; 27. DOI: https://doi.org/10.3390/molecules27061925
20. Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues. En: Advances in Cancer Research. Academic Press Inc.; 2017: 85-116. DOI: https://doi.org/10.1016/bs.acr.2016.11.009
21. Lee SB, Bose S, Ahn SH, Son BH, Ko BS, Kim HJ, et al. Breast cancer diagnosis by analysis of serum N-glycans using MALDI-TOF mass spectroscopy. PLoS One. 1 de abril de 2020; 15(4). DOI: https://doi.org/10.1371/journal.pone.0231004
22. Sun J, Yu G, Yang Y, Qiao L, Xu B, Ding C, et al. Evaluation of prostate cancer based on MALDI-TOF MS fingerprinting of nanoparticle-treated serum proteins/peptides. Talanta. 1 de diciembre de 2020; 220. DOI: https://doi.org/10.1016/j.talanta.2020.121331
23. Li K, Pei Y, Wu Y, Guo Y, Cui W. Performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in diagnosis of ovarian cancer: A systematic review and meta-analysis. Journal of Ovarian Research. BioMed Central Ltd.; 2020; 13. DOI: https://doi.org/10.1186/s13048-019-0605-2
24. Gonçalves JPL, Bollwein C, Schlitter AM, Kriegsmann M, Jacob A, Weichert W, et al. MALDI-MSI: A Powerful Approach to Understand Primary Pancreatic Ductal Adenocarcinoma and Metastases. Molecules. 1 de agosto de 2022; 27(15). DOI: https://doi.org/10.3390/molecules27154811
25. Xu A, Xie W, Wang Y, Ji L. Potential of MALDI-TOF mass spectrometry to overcome the interference of hemoglobin variants on HbA1cmeasurement. Clin Chem Lab Med. 2020; 59(1):233-9. DOI: https://doi.org/10.1515/cclm-2020-0724
26. Xu A, Wang Y, Li J, Liu G, Li X, Chen W, et al. Evaluation of MALDI-TOF MS for the measurement of glycated hemoglobin. Clinica Chimica Acta. 1 de noviembre de 2019; 498:154-60. DOI: https://doi.org/10.1016/j.cca.2019.08.025
27. Wan MH, Wang Y, Zhan L, Fan J, Hu TY. MALDI-TOF mass spectrometry-based quantification of C-peptide in diabetes patients. European Journal of Mass Spectrometry. 1 de febrero de 2020; 26(1):55-62. DOI: https://doi.org/10.1177/1469066719865265
28. Zawada A, Naskręt D, Matuszewska E, Kokot Z, Grzymisławski M, Zozulińska-Ziółkiewicz D, et al. Maldi-tof protein profiling reflects changes in type 1 diabetes patients depending on the increased amount of adipose tissue, poor control of diabetes and the presence of chronic complications. Int J Environ Res Public Health. 1 de marzo de 2021; 18(5):1-13. DOI: https://doi.org/10.3390/ijerph18052263
29. Mortazavipour MM, Mahdian R, Shahbazi S. The current applications of cell-free fetal DNA in prenatal diagnosis of single-gene diseases: A review. International Journal of Reproductive BioMedicine (IJRM) [Internet]. 6 de septiembre de 2022; 20(8):613-26. Disponible en: https://knepublishing.com/index.php/ijrm/article/view/11751 DOI: https://doi.org/10.18502/ijrm.v20i8.11751
30. Breveglieri G, D’Aversa E, Finotti A, Borgatti M. Non-invasive Prenatal Testing Using Fetal DNA. Mol Diagn Ther [Internet]. 2 de abril de 2019; 23(2):291-9. Disponible en: http://link.springer.com/10.1007/s40291-019-00385-2 DOI: https://doi.org/10.1007/s40291-019-00385-2
31. Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer’s disease biomarkers in biological fluids. Journal of Neurochemistry. John Wiley and Sons Inc. 2021; 159: 211-33. DOI: https://doi.org/10.1111/jnc.15465
32. Kitamura Y, Usami R, Ichihara S, Kida H, Satoh M, Tomimoto H, et al. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer’s disease. Neurol Res. 4 de marzo de 2017; 39(3):231-8. DOI: https://doi.org/10.1080/01616412.2017.1281195
33. Abe K, Shang J, Shi X, Yamashita T, Hishikawa N, Takemoto M, et al. A New Serum Biomarker Set to Detect Mild Cognitive Impairment and Alzheimer’s Disease by Peptidome Technology. Journal of Alzheimer’s Disease. 2020; 73(1):217-27. DOI: https://doi.org/10.3233/JAD-191016
34. Aresta AM, De Vietro N, Zambonin C. Analysis and Characterization of the Extracellular Vesicles Released in Non-Cancer Diseases Using Matrix-Assisted Laser Desorption Ionization/Mass Spectrometry. International journal of molecular sciences. 2024; 25. DOI: https://doi.org/10.3390/ijms25084490
35. Calderaro A, Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms. Multidisciplinary Digital Publishing Institute (MDPI). 2024; 12. DOI: https://doi.org/10.3390/microorganisms12020322
36. He MJ, Pu W, Wang X, Zhang W, Tang D, Dai Y. Comparing DESI-MSI and MALDI-MSI Mediated Spatial Metabolomics and Their Applications in Cancer Studies. Frontiers in Oncology. Frontiers Media S.A. 2022; 12. DOI: https://doi.org/10.3389/fonc.2022.891018
37. Kalsi J, Gentry‐Maharaj A, Ryan A, Singh N, Burnell M, Massingham S, et al. Performance characteristics of the ultrasound strategy during incidence screening in the UK collaborative trial of ovarian cancer screening (UKCTOCS). Cancers (Basel). 1 de febrero de 2021; 13(4):1-13. DOI: https://doi.org/10.3390/cancers13040858
38. Wei SJ, Wang LP, Wang JY, Ma JX, Chuan F Bin, Zhang YD. Diagnostic Value of Imaging Combined with Tumor Markers in Early Detection of Lung Cancer. Front Surg. 26 de noviembre de 2021; 8. DOI: https://doi.org/10.3389/fsurg.2021.694210
39. Xie XF, Chu HJ, Xu YF, Hua L, Wang ZP, Huang P, et al. Proteomics study of serum exosomes in Kawasaki disease patients with coronary artery aneurysms. Cardiol J. 2019; 26(5):584-93. DOI: https://doi.org/10.5603/CJ.a2018.0032
40. Chandra T, Podberesky DJ, Romberg EK, Tang ER, Iyer RS, Epelman M. Optimization of pediatric body CT angiography: What radiologists need to know. American Journal of Roentgenology. 1 de septiembre de 2020; 215(3):726-35. DOI: https://doi.org/10.2214/AJR.19.22273
41. Gu D, Chen Y, Masucci M, Xiong C, Zou H, Holthofer H. Potential urine biomarkers for the diagnosis of prediabetes and early diabetic nephropathy based on ISN CKHDP program. Clin Nephrol. 2021; 93:S129-33. DOI: https://doi.org/10.5414/CNP92S123
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Erick Ramírez Muro, Edson Iván González Martínez, Ana Rivas Sordo, Oscar Arturo Bustos Roque, Rusland Enrique Torres Orozco

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Lux Médica está bajo una licencia de Creative Commons Reconocimiento-NoComercial-Compartir Igual 4.0 Internacional.