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En esta investigacion se presenta un método numérico de un sistema de ecuaciones
diferenciales derivadas de la funcién logistica que modela el crecimiento de poblaciones,
particularmente para el crecimiento del drea y radio de una especie de hongo, el modelo
es una correccién fraccionaria con derivadas temporales de Caputo. El sistema tiene
puntos de equilibrio: un nodo atractor y uno repulsor. Con un teorema de punto fijo, se
verifica la existencia de soluciones, también se prueba la estabilidad asintética de las
mismas. Numéricamente se utilizan diferencias finitas L1 para aproximar las derivadas
fraccionarias, se verifica que el orden de convergencia del método es lineal (en
concordancia con el orden de consistencia de las diferencias L1), este método es explicito
y converge a la solucidén del modelo continuo. Finalmente se realizan simulaciones del
crecimiento radial y del drea con diferentes valores para la derivada fraccionaria que
concuerdan con el andlisis previo.
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In this research, a generalization of Verhulst's equation is proposed, to establish a model of
fungus growth, the Caputo time-fractional derivative is used to that end. The main property
of the logistics function is an asymptotic equilibrium point, it is verified that this generalization
also accomplishes this state. With the help of a fixed-point theorem, it is verified the existence
of a solution for the numerical method, which utilizes L1 differences, also it is explicit, and
convergent to the solution of the continuous system. Some simulations are presented in order
to verify the properties previously proved, such as the order of convergence and graphical
simulations.

Keywords: logistic function; Caputo time-fractional derivative; L1 differences; asymptotical
stability; order of convergence; fixed point theorem.

La ecuacion logistica es una de las herramientas principales para el modelado del
crecimiento de poblaciones. Surge como una correccion del modelo de Malthus que tiene
como resultado un crecimiento exponencial, la correccion tiene forma de coeficiente de
inhibicion, que se considera proporcional al cuadrado del tamaio de la poblacion; esto
quiere decir que las poblaciones a modelar no crecen de forma desenfrenada, sino que
por la cantidad limitada de espacio y comida las poblaciones estdn destinadas a disminuir
suritmo de crecimiento, y eventualmente detenerse en una cantidad predeterminada; esta
ecuacion fue descrita por primera vez por el matemdatico Pierre Francois Verhulst (1838) con
una nota sobre la ley de crecimiento de poblaciones. No se hablé mucho sobre este
resultado hasta su redescubrimiento al final del siglo XX, cuando se observd que la ecuacion
se puede aplicar en una vasta cantidad de dreas de la investigacién, incluyendo auto
catdlisis quimico descubierto y descrito por Ostwald (1883), cinética de Michaelis-Menten
(Real, 1977), guimioterapia contra el cdncer (Swan, 1986), etc.

Por ofro lado, la generalizacidén de ecuaciones por la via fraccionaria ha sido muy
fructifera a lo largo de los Ultimos anos, pues varias ramas de la ciencia han empleado
operadores fraccionarios con el objetivo de mejorar la descripcion de fendmenos naturales;
en especifico, el operador definido por Caputo se ha usado para modelos en los que los
efectos de memoria son considerados. Algunos ejemplos de modelos fisicos y matemdticos
que se encuentran en la literatura son: el control éptimo de algunos sistemas de VIH con
memoria en orden fraccionario (Ding, Wang, & Ye, 2011), procesos de difusién a través de
la piel (Caputo & Cametti, 2021) y flujo de magnetohidrodindmica en medios porosos sobre
un plato movible vertical con memoria térmica (Ali Shah, Ahmed, Elnageeb, & Rashidi,
2019), entre muchos otros. También se cuenta con avances con derivadas de Riesz y
Caputo como en un modelo de difusion reaccion (Macias-Diaz, Serna-Reyes, & Flores-
Oropeza, 2024).

El propdsito de esta investigacion es definir una nueva generalizacion de un sistema
gue modela el crecimiento de drea y radio de cierto tipo de hongos; especificamente los
gue se pueden modelar con la ya mencionada funcién logistica, un sistema de ecuaciones
diferenciales con la forma de la ecuacion de Verhulst; ademds de probar propiedades del
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sistema continuo como puntos de equilibrio. También se pretende proveer de un método
numérico que aproxime al sistema continuo, se mostrard que existe una solucién para dicho
método que coincide con la solucién al esquema continuo; ademds de propiedades
tipicas del andlisis numérico como orden de consistencia y estabilidad; por Ultimo, se
realizardn simulaciones para verificar que el sistema se comporta de forma adecuada al
simular con valores cercanos a la derivada cldsica; simulaciones con diferentes valores
fraccionarios, acompanados del andlisis de convergencia para ambas ecuaciones y, por
Ultimo, una simulaciéon grdfica del crecimiento radial del hongo en una caja de Petri. La
generdlizacion del sistema es un punto de partida para crear nuevos métodos de cultivo
para posiblemente optimizar la produccién de este hongo en la region.

La siguiente terminologia y notacién serd usada a lo largo de este documento. Asumamos
qgue By c R denota un conjunto con la forma [0,T], con T > 0, que se define como Ia
longitud de periodo temporal. Sean uy, u,. k; y k, constantes reales; donde los primeros dos
nUmeros corresponden al ritmo de crecimiento especifico con respecto al drea y el
didmetro, los dos segundos numeros al efecto de inhibicidén respectivamente. Definimos
también A(t) y D(t) funciones continuas sobre el dominio By, que representan la funcién de
drea y didmetro del experimento. En este trabagjo estudiaremos una generalizaciéon
fraccionaria de un modelo de crecimiento de setas comestibles, el problema de frontera:

dB
EA@) = wA(t) — kA*(t), VtE By,
dB
mD(t) = u,D(t) — k,D%(t), Vte€ By, (1)
D(O) = DO;
tal que {A(O) 4y,

AQui asumimos que t € By, y que dPA(t) representa la generalizaciéon fraccionaria en
el tiempo de la derivada, llamada derivada de Caputo, definida de la siguiente manera:

Definicion 1. (Podlubny, 1998) Sea ¢ una funcién con dominio By, ademds sea B € R tal que
0 < B < 1. Para cada t € By, definimos el operador de derivada fraccionaria de Caputo en
el tiempo con orden B de ¢ (si es que existe) como:

e 1 fop(r) dn
ath _F(l—ﬁ)Jo o (t—mF’
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Es importante mencionar que el modelo matemdtico (1) es una forma general de
un sistema de crecimiento poblacional. Formas particulares de esta ecuacién diferencial
aparecen en modelos de dindmica de crecimiento dependiendo de las especificaciones,
sU uso va desde la prediccion del crecimiento de la poblacién de paises como Bélgica
(Verhulst, 1838), el peso de ratas de laboratorio, de embriones de rana, la fruta Cucurbita
pepo. la correlacién de crecimiento de varias partes del cuerpo humano (Robertson, 1908),
entre ofros.

Para encontrar los puntos de estabilidad sélo es necesario igualar a cero cada uno
de los elementos del sistema (1), que nos da como resultado:

0 =A)(uy — kA1),
0 = D(t)(u; — koD(1)),

Luego obftendremos que los puntos de equilibrio del sistema son: (437, D;) = (0,0) y
(A3,D5) = (u1/kq, 12/ k), para mostrar qué tipo de punto de equilibrio tendremos, recurrimos
al método de la matriz Jacobiana, que para este sistema es:

2k, A 0

_ |#1—
](A:D)_ 0 ‘Ll2—2k2D

Ahora deberemos obtener los valores propios caracteristicos de los puntos de
equilibrio, para determinar su comportamiento, para (43, Dy):

ey | = 2k x0 =2 0 P B

Los valores propios de la matrizson: 4, = u; >0y A, = u, > 0, por lo que tendremos
dos casos: si u; # u, €l punto de equilibrio es un nodo repulsor, fodas las trayectorias se alejan
de (43, D;), mienfras que si u; = u,, €l punto de equilibrio es un repulsor, las trayectorias se
alejan del punto de equilibrio en forma de rayos o curvas, asintéticamente inestable. Para
(43,D3):

J(A3,D3) — Al| = b= (= =D~z = )
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Los autovalores de la matriz son: 4, = —u;, <0y A, = —u, <0, por lo que también
tendremos dos casos: si u; # u, el punto de equilibrio es un nodo atractor, todas las
trayectorias se acercan a (43, D3). si uy = u, €l punto es un atractor, asintéticamente estable.

Para probar la estabilidad asintética del sistema y la existencia de soluciones,
debemos tomar en consideracion los siguientes resultados:

Lema 1. (Estabilidad de sistemas de Ecuaciones Diferenciales Fraccionarias con mismo
orden) (Brandibur, Garrappa, & Kaslik, 2021)

En el caso particular de un sistema de ecuaciones diferenciales fraccionarias lineal:

dP
W)ﬁ(t) = a11Y1(t) — a2y, (t)

dB
ﬁJ’z(t) = Ay, () — azy,(t)

Con B € (0,1] y A = (a;;) € R¥?, si Tr(4) < 2,/det(A) * cos(%), entonces el sistema es
asintéticamente estable.

Lema 2. (Existencia y unicidad de una solucion) (Ortiz & Herndndez, 2013) Sea g € (0,1), By =
(0,7), se define F:By —» R continua y acotada, se asume que F satisface la condicion de
Lipschitz |F(X,) — F(X,)| < L|X, — X,|. existe un Unico X(t) que satisface el problema de valor
inicial (1).

Con el uso de la linealizacion alrededor del punto de estabilidad (43, D;), ademds
del Lema 1, se puede verificar la estabilidad asintética del sistema, pues:

(143, 09)) = (s — ) < 2yt » cos () = 2,/ et = cos ()

Ahora reescribimos el sistema en su forma integral de Volterra, sélo nos enfocaremos
en el primer elemento de (1):
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A(t) = Ay + L t(t — x)P71F (x, A(x))dx 0<x<T
re)Js

Por medio del Lema 2 podremos verificar que si la funcion F(x, A(x)) = pA(x) —
k,A?(x) es uniformemente Lipschitz continua, entonces (1) tendrd solucién Unica para A(t) y
D(t).

Teorema 1. Existe un sistema de soluciones para (1) y cada conjunto de condiciones
iniciales.

Para verificar el resultado, basta con notar que la funcién F(x,A(x)) = Alx) —
k,A?(x) esté acotada por A5 = u, /k,, al ser asintéticamente estable, claramente es continua
y sélo debe ser mostrado que la funcién cumple con la condicién de Lipschitz; es decir:

IF(A2) — F(AD] = |1 (A2 — Ay) — ki (A3 — ADI < (uy + 2k)|A; — A

por lo que existe una Unica solucién A(t) para cada conjunto de condiciones iniciales, el
procedimiento para obtener un Unico D(t) es similar, asi que se omite.

Para aproximar numéricamente la solucion del modelo (1) sobre el dominio By,
seguiremos un enfoque de diferencias finitas, fijando N € N. Para ello, establezcamos una
particién regular del intervalo [0,T], de la forma 0 =t, <t; < --- < ty = T. Definiendo asi la
particién temporal, por = = T/N.

Por conveniencia, definimos I, = {0,1, ...,n} y I, = I, U {-1}, para cada n € N. En este
frabajo usaremos los simbolos a™ y d™ para denotar las aproximaciones a los valores exactos
A(t,) y D(t,) respectivamente y para cada n € I,,. Mas adn, definimos el siguiente operador:

Definicidon 2. (Operador temporal en diferencias L1) (Zhuang & Liu, 2006) Sea (w™)
cualquier secuencia finita. Se define el operador discreto

nETN

m

e wmtl — _
628 wh = Z bf_mf,wl € Iy_q1
m=0
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con el coeficiente b? definido de la siguiente forma:

1-8
bg = F(‘;i—ﬁ) ((m + 1)1_‘8 — ml_ﬁ)

Los operadores L1 cuentan con la propiedad de aproximar a la derivada
fraccionaria de Caputo si la funcidn es suficientemente suave, es decir:

Lema 3. (Orden de consistencia de los operadores L1) (Lin & Xu, 2007) Si se asume que ¢ €
C?(Br)y B € (0,1], silas derivadas de orden 2 estdn acotadas en [0, «), entonces:

8 a’
8¢ p(tn) =5 d(ta) + 0(z*F), vneN

Sean A, y D, condiciones iniciales, y supongamos que A(t) y D(t) son funciones
diferenciables. El esquema para aproximar las soluciones del modelo diferencial (1) viene
dado por el sistema de ecuaciones discretas

5f a® = wa® —ky;(a®)?,vn € Iy_,, (2)
88 dm = pd™ — ky(d™)?,vn € Ty_y,
. a’®=A
sujeto a { 0
J dO = Do,

Este esquema es un modelo discreto explicito. En consecuencia, para resolver el
modelo discreto, con n =0 despejamos a' y d* en las ecuaciones de (2), y usando las
condiciones a® = Ay, d° = D,

1 T 2
a =4,+ 7 (114 — k1A7)
o

d' = Dy + — (u, Dy — kD2
0 B(Hl o 1D5)
by
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Para valores de n mayores que 1 usamos la siguiente igualdad para poder despejar
los términos a™*! y d™*t,

m+1 __ wm

n n-1
P Wm+1 —wm s Wn+1 —wh 8 w
bk—m—= bo —+t bn—m—
T T T
m=0 m=0

por lo que la forma explicita de las ecuaciones de (2) serdn:

n-1 m+1 _ ,m
n+l — ,n v B a a n ny2 1
a*t=a"+—| - bn—mf-l_ wpa* — k(@) |, Vn € Iy_4
0 m=0
-1
n+1 n v S B dmtt —dm n ny2 1
d = d + b_ﬁ - bn—m + I.lzd - kz(d ) ) Vn € IN—l
0 m=0

RESULTADOS

En todos nuestros ejemplos, tomaremos los siguientes valores fijos: T = 30, u; = 0279y k; =
0.023, mientras que u, = 0.466 y k, = 0.006 obtenidos de la bibliografia (Sarikaya & Ladisch,
1997) con t y B siendo las variables principales de nuestros experimentos computacionales,
el objetivo es realizar una comparacién entre la derivada no fraccionaria y un valor
fraccionario cercano; también se pretende analizar el comportamiento asintdtico de la
funciéon con diferentes valores de g, por Ultimo se realizard un andlisis de convergencia con
respecto a la particion temporal.

Para nuestra primera simulacion, se compara la derivada fraccionaria con g =
0.9999 y t = 0.1, contando con la solucién del sistema no fraccionario:

Aoty
Aoky + (ug — Agkie™Hat)

A(t) =
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Modelo Fraccionario vs Modelo No Fraccionario Modelo Fraccionario vs Modelo No Fraccionario
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Figura 1. Representacion grdfica de la aproximacion de la solucidon at vs. la solucidn real A(t)
(izquierda), ademads de la aproximacion de la solucion dt vs. la solucidn real D(t) (derecha), obtenidas
mediante el esquema (2) para las condiciones iniciales A, = Dy = 1.

Elaboracion propia.

La figura 1 nos muestra la aproximacion fraccionaria del modelo (1) para las
variables fijas antes mencionadas y condiciones iniciales de drea y didmetro de 1, estas
grdéficas fueron realizadas usando las herramientas Plot y Axes de Matlab vy la linea azul
representa la aproximacion; mientras que la linea anaranjada la solucion no fraccionaria;
es de esperar que haya un error enfre ambas, que se ird reduciendo mientras g tiende a 1.

También se realizaron simulaciones para diferentes valores fraccionarios de g, para
ser especificos: B = 0.25, y g = 0.75, todos con un valor de 7 = 0.1, mostrados en la figura
2jError! No se encuentra el origen de la referencia., donde se puede observar que mientras
la derivada fraccionaria se acerca a cero el crecimiento es mds pronunciado; mientras que
al usar valores cercanos a uno el crecimiento eventualmente se estabiliza.
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Figura 2. Representacion grdfica de la aproximaciéon de la solucion at con g =
0.25 (izquierda arriba) y g = 0.75 (izquierda abajo), ademds de la aproximacién
de la solucidon dt con B =0.25 (derecha arriba) y g = 0.75 (derecha abagjo),
obtenidas mediante el esquema (2) para las condiciones iniciales A, = Dy = 1.

Elaboracion propia.

Se realizé un andlisis de convergencia temporal con los valores fijados g = 0.25y g =
0.75, tomando en cuenta las soluciones finales a” y d7, ademds de una solucidn exacta con
un valor de 7 suficientemente pequeno, para obtener el orden de convergencia se obtuvo
el valor absoluto del error y la siguiente funcion.

_—c
T = 1083 c

T
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Tabla 1
Andlisis de convergencia temporal para la funcién de drea
B =025 B =075
T €T Pr T €r Pt
0.1 343159 x 1073 — 0.1 8.30693 x 1073 -
0.05 1.70227 x 1073 1.0114 0.05 424183 x 1073 0.9696
0.025 8.37645 x 1074 1.0230 0.025 2.13861 x 1073 0.9880
0.0125 4,05323 x 1074 1.0472 0.0125 1.05564 x 1073 1.0185
0.00625 1.89155 x 1074 1.0995 0.00625 5.00574 x 1074 1.0764
0.003125 8.10678 x 1075 1.2223 0.003125 217236 x 107+ 1.2043
0.0015625 2.70229 x 1075 1.5849 0.0015625 7.31059 x 1075 1.5712
Nota: Elaboracién propia.
Tabla 2
Andilisis de convergencia temporal para la funcién de didmetro
B =0.25 B =0.75
T €T Pr T €r Pr
0.1 1.66271 x 1071 - 0.1 7.62737 x 1072 -
0.05 8.30664 x 1072 1.0012 0.05 3.93154 x 1072 0.9560
0.025 410229 x 1072 1.0178 0.025 1.99593 x 1072 0.9780
0.0125 1.98872 x 1072 1.0445 0.0125 9.90303 x 1073 1.0111
0.00625 9.28976 x 1073 1.0981 0.00625 471406 x 1073 1.0708
0.003125 3.98335x 1073 1.2216 0.003125 2.05168 x 1073 1.2001
0.0015625 1.32813 x 1073 1.5845 0.0015625 6.91907 x 10~* 1.5681

Nota: Elaboracién propia.

QQ
QoL

Figura 3. Representacién grdfica del crecimiento del hongo en una caja de Petri, con la
aproximacion de la solucién dt con g = 0.75, obtenidas mediante el esquema (2) para la
condicién inicial Dy = 1. Las figuras representan el tiempo t =0 (izquierda arriba), t =6
(centro arriba), t = 12 (derecha arriba), t = 18 (izquierda abajo), t = 24 (centro abagjo) y t =

30 (derecha abajo).
Elaboracion propia.
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De las Tabla 1 y Tabla 2 se puede confirmar que el método tiene un orden de
convergencia aproximadamente igual a 2 -8, como se predijo analiticamente. De
cualguier forma se observa que, en el peor de los casos, se tiene un comportamiento lineal.

Por Ultimo, se realizé una simulacién grafica del crecimiento del hongo, para ser
preciso del didmetro en comparaciéon del tiempo usando g = 0.75y t = 0.1.

Del método numérico simulado se verificd que: la derivada fraccionaria de Caputo se
comporta de forma similar a la derivada ordinaria al acercarse a valores enteros, que la
generalizacion también cuenta con un nodo repulsor en el origen y un nodo atractor en la
razédn de la taza del crecimiento con el efecto de inhibicion; ademds de notar que mientras
la derivada fraccionaria toma valores cercanos a cero, la funcién se demora al ser atraida
a su nodo asintdticamente estable, con las tablas de andlisis de convergencia se verifica el
hecho de que el modelo discreto que se propone es estable cuando el tamano de paso
temporal es suficientemente pequeno; ademds de verificar el orden de convergencia del
operador L1, con los resultados se obtiene convergencia lineal. Cabe recalcar que no existe
en la bibliografia una generalizacion del sistema presentado; ademds de que se utilizaron
datos de crecimiento e inhibicidn de hongos presentes en la literatura para los experimentos
computacionales y se realizé una simulacion del crecimiento de hongos en una caja de
Petri para efectos ilustrativos.

Se propuso una generadlizacién de un sistema de ecuaciones que modela el crecimiento
de poblaciones, en particular el crecimiento de hongos, dicha generalizacién utiliza
derivadas fraccionarias en el fiempo de Caputo, que considera memoria. El sistema se basa
en la ecuacidon de Verhulst y se mostrd que el sistema continuo tiene como puntos de
estabilidad el origen y la diferencia entre el coeficiente de crecimiento e inhibicién, ademds
se demostrd que es asintéticamente estable. Por medio de diferencias L1 se propuso una
discretizacidon explicita para poder aproximar al sistema continuo por medio de una
particién temporal. Se presentaron las condiciones para la existencia de una solucién,
ademds del orden de consistencia del método, se comprobaron similitudes con el sistema
no fraccionario. Se realizaron simulaciones con diferentes valores de la derivada entre cero
y uno, también un andlisis de convergencia que concuerda con el orden de consistencia
de los operadores, finalmente se realizd una simulacién grafica del crecimiento radial de un
hongo, tomando en cuenta coeficientes encontrados en la bibliografia, verificando
algunas de las propiedades antes descritas, como la estabilidad asintdtica de las soluciones
y el crecimiento inicial exponencial, seguido del decaimiento del mismo.

Por supuesto que la parte numérica del método puede ser mejorada, por medio de
ofras técnicas de discretizacién que podrian mejorar el orden de convergencia del sistema;
aungue tal vez se podria comprometer la simplicidad computacional.
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Los resultados de esta investigaciéon representan un primer avance para analizar y
modelar el crecimiento de hongos, asi como otras poblaciones que presentan crecimiento
similar a la funcién logistica, que entre otfras cosas, permitirdn realizar un modelo de
negocios para el cultivo y distribucion de los mismos, el objetivo es fijar una cota temporal
que limite el crecimiento del hongo a las fases de mayor expansion, ademds se podrian
automatizar algunas de las fases del cultivo por medio de tecnologia y el modelo recién
obtenido.
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