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En esta investigación se presenta un método numérico de un sistema de ecuaciones 

diferenciales derivadas de la función logística que modela el crecimiento de poblaciones, 

particularmente para el crecimiento del área y radio de una especie de hongo, el modelo 

es una corrección fraccionaria con derivadas temporales de Caputo. El sistema tiene 

puntos de equilibrio: un nodo atractor y uno repulsor. Con un teorema de punto fijo, se 

verifica la existencia de soluciones, también se prueba la estabilidad asintótica de las 

mismas. Numéricamente se utilizan diferencias finitas L1 para aproximar las derivadas 

fraccionarias, se verifica que el orden de convergencia del método es lineal (en 

concordancia con el orden de consistencia de las diferencias L1), este método es explícito 

y converge a la solución del modelo continuo. Finalmente se realizan simulaciones del 

crecimiento radial y del área con diferentes valores para la derivada fraccionaria que 

concuerdan con el análisis previo. 

Palabras clave: función logística; derivada espacial de Caputo; diferencias L1; estabilidad 

asintótica; orden de convergencia; teorema de punto fijo. 
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In this research, a generalization of Verhulst’s equation is proposed, to establish a model of 

fungus growth, the Caputo time-fractional derivative is used to that end. The main property 

of the logistics function is an asymptotic equilibrium point, it is verified that this generalization 

also accomplishes this state. With the help of a fixed-point theorem, it is verified the existence 

of a solution for the numerical method, which utilizes L1 differences, also it is explicit, and 

convergent to the solution of the continuous system. Some simulations are presented in order 

to verify the properties previously proved, such as the order of convergence and graphical 

simulations. 

Keywords: logistic function; Caputo time-fractional derivative; L1 differences; asymptotical 

stability; order of convergence; fixed point theorem. 

 

 

La ecuación logística es una de las herramientas principales para el modelado del 

crecimiento de poblaciones. Surge como una corrección del modelo de Malthus que tiene 

como resultado un crecimiento exponencial, la corrección tiene forma de coeficiente de 

inhibición, que se considera proporcional al cuadrado del tamaño de la población; esto 

quiere decir que las poblaciones a modelar no crecen de forma desenfrenada, sino que 

por la cantidad limitada de espacio y comida las poblaciones están destinadas a disminuir 

su ritmo de crecimiento, y eventualmente detenerse en una cantidad predeterminada; esta 

ecuación fue descrita por primera vez por el matemático Pierre François Verhulst (1838) con 

una nota sobre la ley de crecimiento de poblaciones. No se habló mucho sobre este 

resultado hasta su redescubrimiento al final del siglo XX, cuando se observó que la ecuación 

se puede aplicar en una vasta cantidad de áreas de la investigación, incluyendo auto 

catálisis químico descubierto y descrito por Ostwald (1883), cinética de Michaelis-Menten 

(Real, 1977), quimioterapia contra el cáncer (Swan, 1986), etc. 

 Por otro lado, la generalización de ecuaciones por la vía fraccionaria ha sido muy 

fructífera a lo largo de los últimos años, pues varias ramas de la ciencia han empleado 

operadores fraccionarios con el objetivo de mejorar la descripción de fenómenos naturales; 

en específico, el operador definido por Caputo se ha usado para modelos en los que los 

efectos de memoria son considerados. Algunos ejemplos de modelos físicos y matemáticos 

que se encuentran en la literatura son: el control óptimo de algunos sistemas de VIH con 

memoria en orden fraccionario (Ding, Wang, & Ye, 2011), procesos de difusión a través de 

la piel (Caputo & Cametti, 2021) y flujo de magnetohidrodinámica en medios porosos sobre 

un plato movible vertical con memoria térmica (Ali Shah, Ahmed, Elnaqeeb, & Rashidi, 

2019), entre muchos otros. También se cuenta con avances con derivadas de Riesz y 

Caputo como en un modelo de difusión reacción (Macías-Díaz, Serna-Reyes, & Flores-

Oropeza, 2024). 

 El propósito de esta investigación es definir una nueva generalización de un sistema 

que modela el crecimiento de área y radio de cierto tipo de hongos; específicamente los 

que se pueden modelar con la ya mencionada función logística, un sistema de ecuaciones 

diferenciales con la forma de la ecuación de Verhulst; además de probar propiedades del 

ABSTRACT 

INTRODUCCIÓN 

2 



Investigación y Ciencia de la Universidad Autónoma de 

Aguascalientes, 32(93), septiembre-diciembre 2024, e4984 

-Artículos de Investigación- 

issn 1665-4412, e-issn 2521-9758 

Serna-Reyes, A. J., Macías-Díaz, J. E., 

& Romo-Rodríguez, P. 
 

 

sistema continuo como puntos de equilibrio. También se pretende proveer de un método 

numérico que aproxime al sistema continuo, se mostrará que existe una solución para dicho 

método que coincide con la solución al esquema continuo; además de propiedades 

típicas del análisis numérico como orden de consistencia y estabilidad; por último, se 

realizarán simulaciones para verificar que el sistema se comporta de forma adecuada al 

simular con valores cercanos a la derivada clásica; simulaciones con diferentes valores 

fraccionarios, acompañados del análisis de convergencia para ambas ecuaciones y, por 

último, una simulación gráfica del crecimiento radial del hongo en una caja de Petri. La 

generalización del sistema es un punto de partida para crear nuevos métodos de cultivo 

para posiblemente optimizar la producción de este hongo en la región. 

 

 

La siguiente terminología y notación será usada a lo largo de este documento. Asumamos 

que 𝐁𝐓 ⊂ ℝ denota un conjunto con la forma [0, 𝑇], con T > 0, que se define como la 

longitud de periodo temporal. Sean 𝜇1, 𝜇2, 𝑘1 y 𝑘2 constantes reales; donde los primeros dos 

números corresponden al ritmo de crecimiento específico con respecto al área y el 

diámetro, los dos segundos números al efecto de inhibición respectivamente. Definimos 

también 𝐴(𝑡) y 𝐷(𝑡) funciones continuas sobre el dominio 𝐁𝐓, que representan la función de 

área y diámetro del experimento. En este trabajo estudiaremos una generalización 

fraccionaria de un modelo de crecimiento de setas comestibles, el problema de frontera: 

 

d𝛽

d𝑡𝛽
𝐴(𝑡) = 𝜇1𝐴(𝑡) − 𝑘1𝐴2(𝑡), ∀ t ∈ 𝐁𝑻,

d𝛽

d𝑡𝛽
𝐷(𝑡) = 𝜇2𝐷(𝑡) − 𝑘2𝐷2(𝑡), ∀ t ∈ 𝐁𝑇 ,

tal que {
𝐷(0) = 𝐷0,
𝐴(0) = 𝐴0,

 (1) 

 

 Aquí asumimos que 𝑡 ∈ 𝑩𝑻, y que 𝑑𝛽𝐴(𝑡) representa la generalización fraccionaria en 

el tiempo de la derivada, llamada derivada de Caputo, definida de la siguiente manera: 

Definición 1. (Podlubny, 1998) Sea 𝜙 una función con dominio 𝑩𝑻, además sea 𝛽 ∈ ℝ tal que 

0 < 𝛽 < 1. Para cada 𝑡 ∈ 𝑩𝑻, definimos el operador de derivada fraccionaria de Caputo en 

el tiempo con orden 𝛽 de 𝜙 (si es que existe) como: 

 

𝜕𝛽𝜙(𝑡)

𝜕𝑡𝛽
=

1

𝛤(1 − 𝛽)
∫

𝜕𝜙(𝑡)

𝜕𝑡

𝑑𝜂

(𝑡 − 𝜂)𝛽
.

𝑡

0

 

 

MATERIALES Y MÉTODOS 
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 Es importante mencionar que el modelo matemático (1) es una forma general de 

un sistema de crecimiento poblacional. Formas particulares de esta ecuación diferencial 

aparecen en modelos de dinámica de crecimiento dependiendo de las especificaciones, 

su uso va desde la predicción del crecimiento de la población de países como Bélgica 

(Verhulst, 1838), el peso de ratas de laboratorio, de embriones de rana, la fruta Cucurbita 

pepo, la correlación de crecimiento de varias partes del cuerpo humano (Robertson, 1908), 

entre otros. 

 Para encontrar los puntos de estabilidad sólo es necesario igualar a cero cada uno 

de los elementos del sistema (1), que nos da como resultado: 

 

0 = 𝐴(𝑡)(𝜇1 − 𝑘1𝐴(𝑡)),

0 = 𝐷(𝑡)(𝜇2 − 𝑘2𝐷(𝑡)),
 

 Luego obtendremos que los puntos de equilibrio del sistema son: (𝐴1
∗ , 𝐷1

∗) = (0,0) y 
(𝐴2

∗ , 𝐷2
∗) = (𝜇1 𝑘1⁄ , 𝜇2 𝑘2⁄ ), para mostrar qué tipo de punto de equilibrio tendremos, recurrimos 

al método de la matriz Jacobiana, que para este sistema es: 

 

𝐽(𝐴, 𝐷) = [
𝜇1 − 2𝑘1𝐴 0

0 𝜇2 − 2𝑘2𝐷
] 

 

 Ahora deberemos obtener los valores propios característicos de los puntos de 

equilibrio, para determinar su comportamiento, para (𝐴1
∗ , 𝐷1

∗): 

 

|𝐽(A1
∗ , D1

∗ ) − 𝜆𝐼| = |
𝜇1 − 2𝑘1 ∗ 0 − 𝜆 0

0 𝜇2 − 2𝑘2 ∗ 0 − 𝜆
| = (𝜇1 − 𝜆)(𝜇2 − 𝜆) 

 

 Los valores propios de la matriz son: 𝜆1 = 𝜇1 > 0 y 𝜆2 = 𝜇2 > 0, por lo que tendremos 

dos casos: si 𝜇1 ≠ 𝜇2 el punto de equilibrio es un nodo repulsor, todas las trayectorias se alejan 

de (𝐴1
∗ , 𝐷1

∗), mientras que si 𝜇1 = 𝜇2, el punto de equilibrio es un repulsor, las trayectorias se 

alejan del punto de equilibrio en forma de rayos o curvas, asintóticamente inestable. Para 

(𝐴2
∗ , 𝐷2

∗): 

 

|𝐽(A2
∗ , D2

∗ ) − 𝜆𝐼| = |

𝜇1 − 2𝑘1 ∗
𝜇1

k1

− 𝜆 0

0 𝜇2 − 2𝑘2 ∗
𝜇2

k2

− 𝜆
| = (−𝜇1 − 𝜆)(−𝜇2 − 𝜆) 
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 Los autovalores de la matriz son: 𝜆1 = −𝜇1 < 0 y 𝜆2 = −𝜇2 < 0, por lo que también 

tendremos dos casos: si 𝜇1 ≠ 𝜇2 el punto de equilibrio es un nodo atractor, todas las 

trayectorias se acercan a (𝐴2
∗ , 𝐷2

∗), si 𝜇1 = 𝜇2 el punto es un atractor, asintóticamente estable. 

 Para probar la estabilidad asintótica del sistema y la existencia de soluciones, 

debemos tomar en consideración los siguientes resultados: 

 

Lema 1. (Estabilidad de sistemas de Ecuaciones Diferenciales Fraccionarias con mismo 

orden) (Brandibur, Garrappa, & Kaslik, 2021) 

En el caso particular de un sistema de ecuaciones diferenciales fraccionarias lineal: 

 

𝑑𝛽

𝑑𝑡𝛽
𝑦1(𝑡) = 𝑎11𝑦1(𝑡) − 𝑎12𝑦2(𝑡) 

𝑑𝛽

𝑑𝑡𝛽
𝑦2(𝑡) = 𝑎21𝑦1(𝑡) − 𝑎22𝑦2(𝑡) 

 

 Con 𝛽 ∈ (0,1] y 𝐴 = (𝑎𝑖𝑗) ∈ ℝ2×2, si 𝑇𝑟(𝐴) < 2√𝑑𝑒𝑡 (𝐴) ∗ 𝑐𝑜𝑠 (
𝛽𝜋

2
), entonces el sistema es 

asintóticamente estable. 

 

Lema 2. (Existencia y unicidad de una solución) (Ortiz & Hernández, 2013) Sea 𝛽 ∈ (0,1), 𝑩𝑻 =
(0, 𝑇), se define  𝐹: 𝑩𝑻 → ℝ continua y acotada, se asume que 𝐹 satisface la condición de 

Lipschitz  |𝐹(𝑋2) − 𝐹(𝑋1)| ≤ 𝐿|𝑋2 − 𝑋1|, existe un único 𝑋(𝑡) que satisface el problema de valor 

inicial (1). 

 Con el uso de la linealización alrededor del punto de estabilidad (𝐴2
∗ , 𝐷2

∗), además 

del Lema 1, se puede verificar la estabilidad asintótica del sistema, pues: 

 

𝑇𝑟(𝐽(𝐴2
∗ , 𝐷2

∗)) = (−𝜇1 − 𝜇2) < 2√𝜇1𝜇2 ∗ 𝑐𝑜 𝑠 (
𝛽𝜋

2
) = 2√𝑑𝑒𝑡 (𝐴) ∗ 𝑐𝑜𝑠 (

𝛽𝜋

2
) 

 

 Ahora reescribimos el sistema en su forma integral de Volterra, sólo nos enfocaremos 

en el primer elemento de (1): 

5 
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𝐴(𝑡) = 𝐴0 +
1

𝛤(𝛽)
∫ (𝑡 − 𝑥)𝛽−1𝐹(𝑥, 𝐴(𝑥))𝑑𝑥

𝑡

0

          0 ≤ 𝑥 ≤ 𝑇 

 

 Por medio del Lema 2 podremos verificar que si la función 𝐹(𝑥, 𝐴(𝑥)) = 𝜇1𝐴(𝑥) −

𝑘1𝐴2(𝑥) es uniformemente Lipschitz continua, entonces (1) tendrá solución única para 𝐴(𝑡) y 

𝐷(𝑡). 

Teorema 1. Existe un sistema de soluciones para (1) y cada conjunto de condiciones 

iniciales.  

 Para verificar el resultado, basta con notar que la función 𝐹(𝑥, 𝐴(𝑥)) = 𝜇1𝐴(𝑥) −

𝑘1𝐴2(𝑥) está acotada por 𝐴2
∗ = 𝜇1 𝑘1⁄ , al ser asintóticamente estable, claramente es continua 

y sólo debe ser mostrado que la función cumple con la condición de Lipschitz; es decir: 

 

|𝐹(𝐴2) − 𝐹(𝐴1)| = |𝜇1(𝐴2 − 𝐴1) − 𝑘1(𝐴2
2 − 𝐴1

2)| ≤ (𝜇1 + 2𝑘1)|𝐴2 − 𝐴1| 

 

por lo que existe una única solución 𝐴(𝑡) para cada conjunto de condiciones iniciales, el 

procedimiento para obtener un único 𝐷(𝑡) es similar, así que se omite. 

 Para aproximar numéricamente la solución del modelo (1)  sobre el dominio 𝑩𝑻, 

seguiremos un enfoque de diferencias finitas, fijando 𝑁 ∈ ℕ. Para ello, establezcamos una 

partición regular del intervalo [0, 𝑇], de la forma 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇. Definiendo así la 

partición temporal, por 𝜏 = 𝑇/𝑁. 

 Por conveniencia, definimos In = {0,1, … , n} y In = In ∪ {−1}, para cada n ∈ ℕ. En este 

trabajo usaremos los símbolos 𝑎𝑛 y 𝑑𝑛 para denotar las aproximaciones a los valores exactos 

𝐴(tn) y 𝐷(tn) respectivamente y para cada n ∈ In. Más aún, definimos el siguiente operador: 

 

Definición 2. (Operador temporal en diferencias L1) (Zhuang & Liu, 2006) Sea (wn)n∈IN
 

cualquier secuencia finita. Se define el operador discreto 

 

𝛿𝑡
𝛽

 𝑤𝑛 = ∑ 𝑏𝑛−𝑚
𝛽 𝑤𝑚+1 − 𝑤𝑚

𝜏

𝑛

𝑚=0

, ∀𝑛 ∈ 𝐼𝑁̅−1 
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con el coeficiente 𝑏𝑛
𝛽
 definido de la siguiente forma: 

 

𝑏𝑛
𝛽

=
𝜏1−𝛽

Γ(2 − 𝛽)
((𝑚 + 1)1−𝛽 − 𝑚1−𝛽) 

 

 Los operadores L1 cuentan con la propiedad de aproximar a la derivada 

fraccionaria de Caputo si la función es suficientemente suave, es decir: 

Lema 3. (Orden de consistencia de los operadores L1) (Lin & Xu, 2007) Si se asume que 𝜙 ∈
𝒞2(𝑩𝑻) y  𝛽 ∈ (0,1],  si las derivadas de orden 2 están acotadas en [0, ∞), entonces: 

 

𝛿𝑡
𝛽

𝜙(𝑡𝑛) =
𝑑𝛽

𝑑𝑡𝛽
𝜙(𝑡𝑛) + 𝒪(𝜏2−𝛽), ∀𝑛 ∈ ℕ 

 

 Sean A0 y D0 condiciones iniciales, y supongamos que 𝐴(𝑡) y 𝐷(𝑡) son funciones 

diferenciables. El esquema para aproximar las soluciones del modelo diferencial (1) viene 

dado por el sistema de ecuaciones discretas 

 

𝛿𝑡
𝛽

 𝑎𝑛 = μ1𝑎𝑛 − 𝑘1(𝑎𝑛)2, ∀n ∈ IN−1,

𝛿𝑡
𝛽

 𝑑𝑛 = μ2𝑑𝑛 − 𝑘2(𝑑𝑛)2, ∀n ∈ IN−1,

sujeto a {
𝑎0 = A0,

𝑑0 = 𝐷0,

 

(2) 

 

 Este esquema es un modelo discreto explícito. En consecuencia, para resolver el 

modelo discreto, con 𝑛 = 0 despejamos 𝑎1 y 𝑑1 en las ecuaciones de (2), y usando las 

condiciones 𝑎0 = A0, 𝑑0 = D0 

 

𝑎1 = 𝐴0 +
𝜏

𝑏0
𝛽

(μ1𝐴0 − 𝑘1𝐴0
2) 

𝑑1 = 𝐷0 +
𝜏

𝑏0
𝛽

(μ1𝐷0 − 𝑘1𝐷0
2) 
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 Para valores de 𝑛 mayores que 1 usamos la siguiente igualdad para poder despejar 

los términos 𝑎𝑛+1 y 𝑑𝑛+1. 

 

∑ 𝑏𝑘−𝑚
𝛽 𝑤𝑚+1 − 𝑤𝑚

𝜏

𝑛

𝑚=0

= 𝑏0
 𝛽

 
𝑤𝑛+1 − 𝑤𝑛

𝜏
+ ∑ 𝑏𝑛−𝑚

𝛽 𝑤𝑚+1 − 𝑤𝑚

𝜏

𝑛−1

𝑚=0

 

 

por lo que la forma explícita de las ecuaciones de (2) serán: 

 

𝑎𝑛+1 = 𝑎𝑛 +
𝜏

𝑏0
𝛽

(− ∑ 𝑏𝑛−𝑚
𝛽 𝑎𝑚+1 − 𝑎𝑚

𝜏

𝑛−1

𝑚=0

+ μ1𝑎𝑛 − 𝑘1(𝑎𝑛)2) , ∀n ∈ IN−1

𝑑𝑛+1 = 𝑑𝑛 +
𝜏

𝑏0
𝛽

(− ∑ 𝑏𝑛−𝑚
𝛽 𝑑𝑚+1 − 𝑑𝑚

𝜏

𝑛−1

𝑚=0

+ μ2𝑑𝑛 − 𝑘2(𝑑𝑛)2) , ∀n ∈ IN−1

 

 

 

En todos nuestros ejemplos, tomaremos los siguientes valores fijos: 𝑇 = 30, 𝜇1 = 0.279 y 𝑘1 =
0.023, mientras que 𝜇2 = 0.466 y 𝑘2 = 0.006 obtenidos de la bibliografía (Sarikaya & Ladisch, 

1997) con 𝜏 y 𝛽 siendo las variables principales de nuestros experimentos computacionales, 

el objetivo es realizar una comparación entre la derivada no fraccionaria y un valor 

fraccionario cercano; también se pretende analizar el comportamiento asintótico de la 

función con diferentes valores de 𝛽, por último se realizará un análisis de convergencia con 

respecto a la partición temporal. 

 Para nuestra primera simulación, se compara la derivada fraccionaria con 𝛽 =
0.9999 y 𝜏 = 0.1, contando con la solución del sistema no fraccionario: 

 

𝐴(𝑡) =
𝐴0𝜇1

𝐴0𝑘1 + (𝜇1 − 𝐴0𝑘1𝑒−𝜇1𝑡)
 

 

RESULTADOS 
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Figura 1. Representación gráfica de la aproximación de la solución 𝑎𝑡 vs. la solución real 𝐴(𝑡) 

(izquierda), además de la aproximación de la solución 𝑑𝑡 vs. la solución real 𝐷(𝑡) (derecha), obtenidas 

mediante el esquema (2) para las condiciones iniciales 𝐴0 = 𝐷0 = 1.  

Elaboración propia. 

 

 La figura 1 nos muestra la aproximación fraccionaria del modelo (1) para las 

variables fijas antes mencionadas y condiciones iniciales de área y diámetro de 1, estas 

gráficas fueron realizadas usando las herramientas Plot y Axes de Matlab y la línea azul 

representa la aproximación; mientras que la línea anaranjada la solución no fraccionaria; 

es de esperar que haya un error entre ambas, que se irá reduciendo mientras 𝛽 tiende a 1. 

 También se realizaron simulaciones para diferentes valores fraccionarios de 𝛽, para 

ser específicos: 𝛽 = 0.25, y 𝛽 = 0.75, todos con un valor de 𝜏 = 0.1, mostrados en la figura 

2¡Error! No se encuentra el origen de la referencia., donde se puede observar que mientras 

la derivada fraccionaria se acerca a cero el crecimiento es más pronunciado; mientras que 

al usar valores cercanos a uno el crecimiento eventualmente se estabiliza. 
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Figura 2. Representación gráfica de la aproximación de la solución 𝑎𝑡 con 𝛽 =
0.25 (izquierda arriba) y 𝛽 = 0.75 (izquierda abajo), además de la aproximación 

de la solución 𝑑𝑡 con 𝛽 = 0.25 (derecha arriba) y 𝛽 = 0.75 (derecha abajo), 

obtenidas mediante el esquema (2) para las condiciones iniciales 𝐴0 = 𝐷0 = 1. 

Elaboración propia. 

 

 Se realizó un análisis de convergencia temporal con los valores fijados 𝛽 = 0.25 y 𝛽 =
0.75, tomando en cuenta las soluciones finales 𝑎𝑇 y 𝑑𝑇, además de una solución exacta con 

un valor de 𝜏 suficientemente pequeño, para obtener el orden de convergencia se obtuvo 

el valor absoluto del error y la siguiente función. 

 

 

𝜌𝜏 = log2 (
𝜖2𝜏

𝜖𝜏

) 
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Tabla 1 

Análisis de convergencia temporal para la función de área 

𝛽 = 0.25 𝛽 = 0.75 

𝜏 𝜖𝑇 𝜌𝑇 𝜏 𝜖𝑇 𝜌𝑇 
0.1 3.43159 × 10−3 − 0.1 8.30693 × 10−3 − 

0.05 1.70227 × 10−3 1.0114 0.05 4.24183 × 10−3 0.9696 
0.025 8.37645 × 10−4 1.0230 0.025 2.13861 × 10−3 0.9880 

0.0125 4.05323 × 10−4 1.0472 0.0125 1.05564 × 10−3 1.0185 
0.00625 1.89155 × 10−4 1.0995 0.00625 5.00574 × 10−4 1.0764 

0.003125 8.10678 × 10−5 1.2223 0.003125 2.17236 × 10−4 1.2043 

0.0015625 2.70229 × 10−5 1.5849 0.0015625 7.31059 × 10−5 1.5712 

Nota: Elaboración propia. 

 

Tabla 2 

Análisis de convergencia temporal para la función de diámetro 

𝛽 = 0.25 𝛽 = 0.75 

𝜏 𝜖𝑇 𝜌𝑇 𝜏 𝜖𝑇 𝜌𝑇 

0.1 1.66271 × 10−1 − 0.1 7.62737 × 10−2 − 
0.05 8.30664 × 10−2 1.0012 0.05 3.93154 × 10−2 0.9560 

0.025 4.10229 × 10−2 1.0178 0.025 1.99593 × 10−2 0.9780 
0.0125 1.98872 × 10−2 1.0445 0.0125 9.90303 × 10−3 1.0111 

0.00625 9.28976 × 10−3 1.0981 0.00625 4.71406 × 10−3 1.0708 

0.003125 3.98335 × 10−3 1.2216 0.003125 2.05168 × 10−3 1.2001 
0.0015625 1.32813 × 10−3 1.5845 0.0015625 6.91907 × 10−4 1.5681 

Nota: Elaboración propia. 

 

 
Figura 3. Representación gráfica del crecimiento del hongo en una caja de Petri, con la 

aproximación de la solución 𝑑𝑡 con 𝛽 = 0.75, obtenidas mediante el esquema (2) para la 

condición inicial 𝐷0 = 1. Las figuras representan el tiempo 𝑡 = 0 (izquierda arriba), 𝑡 = 6 

(centro arriba), 𝑡 = 12 (derecha arriba), 𝑡 = 18 (izquierda abajo), 𝑡 = 24 (centro abajo) y 𝑡 =
30 (derecha abajo). 

Elaboración propia. 
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 De las Tabla 1 y Tabla 2 se puede confirmar que el método tiene un orden de 

convergencia aproximadamente igual a 2 − 𝛽, como se predijo analíticamente. De 

cualquier forma se observa que, en el peor de los casos, se tiene un comportamiento lineal. 

 Por último, se realizó una simulación gráfica del crecimiento del hongo, para ser 

preciso del diámetro en comparación del tiempo usando 𝛽 = 0.75 y 𝜏 = 0.1. 

 

 

Del método numérico simulado se verificó que: la derivada fraccionaria de Caputo se 

comporta de forma similar a la derivada ordinaria al acercarse a valores enteros, que la 

generalización también cuenta con un nodo repulsor en el origen y un nodo atractor en la 

razón de la taza del crecimiento con el efecto de inhibición; además de notar que mientras 

la derivada fraccionaria toma valores cercanos a cero, la función se demora al ser atraída 

a su nodo asintóticamente estable, con las tablas de análisis de convergencia se verifica el 

hecho de que el modelo discreto que se propone es estable cuando el tamaño de paso 

temporal es suficientemente pequeño; además de verificar el orden de convergencia del 

operador L1, con los resultados se obtiene convergencia lineal. Cabe recalcar que no existe 

en la bibliografía una generalización del sistema presentado; además de que se utilizaron 

datos de crecimiento e inhibición de hongos presentes en la literatura para los experimentos 

computacionales y se realizó una simulación del crecimiento de hongos en una caja de 

Petri para efectos ilustrativos. 

 

 

Se propuso una generalización de un sistema de ecuaciones que modela el crecimiento 

de poblaciones, en particular el crecimiento de hongos, dicha generalización utiliza 

derivadas fraccionarias en el tiempo de Caputo, que considera memoria. El sistema se basa 

en la ecuación de Verhulst y se mostró que el sistema continuo tiene como puntos de 

estabilidad el origen y la diferencia entre el coeficiente de crecimiento e inhibición, además 

se demostró que es asintóticamente estable. Por medio de diferencias L1 se propuso una 

discretización explícita para poder aproximar al sistema continuo por medio de una 

partición temporal. Se presentaron las condiciones para la existencia de una solución, 

además del orden de consistencia del método, se comprobaron similitudes con el sistema 

no fraccionario. Se realizaron simulaciones con diferentes valores de la derivada entre cero 

y uno, también un análisis de convergencia que concuerda con el orden de consistencia 

de los operadores, finalmente se realizó una simulación gráfica del crecimiento radial de un 

hongo, tomando en cuenta coeficientes encontrados en la bibliografía, verificando 

algunas de las propiedades antes descritas, como la estabilidad asintótica de las soluciones 

y el crecimiento inicial exponencial, seguido del decaimiento del mismo. 

 Por supuesto que la parte numérica del método puede ser mejorada, por medio de 

otras técnicas de discretización que podrían mejorar el orden de convergencia del sistema; 

aunque tal vez se podría comprometer la simplicidad computacional. 

DISCUSIÓN 

CONCLUSIONES 
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 Los resultados de esta investigación representan un primer avance para analizar y 

modelar el crecimiento de hongos, así como otras poblaciones que presentan crecimiento 

similar a la función logística, que entre otras cosas, permitirán realizar un modelo de 

negocios para el cultivo y distribución de los mismos, el objetivo es fijar una cota temporal 

que limite el crecimiento del hongo a las fases de mayor expansión, además se podrían 

automatizar algunas de las fases del cultivo por medio de tecnología y el modelo recién 

obtenido. 
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